Repository logo
Communities & Collections
All of MSAR
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Elkassas D.W."

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Item
    Bonding of contemporary glass ionomer cements to different tooth substrates; microshear bond strength and scanning electron microscope study
    (Dental Investigations Society, 2015) El Wakeel A.M.; Elkassas D.W.; Yousry M.M.; Department of Conservative Dentistry; Faculty of Dental Medicine; Modern Sciences and Arts University; Cairo; Egypt; Department of Operative Dentistry; Faculty of Oral and Dental Medicine; Misr International University; Cairo; Egypt; Department of Operative Dentistry; Faculty of Oral and Dental Medicine; Cairo University; Cairo; Egypt
    Objective: This study was conducted to evaluate the microshear bond strength (?SBS) and ultramorphological characterization of glass ionomer (GI) cements; conventional GI cement (Fuji IX, CGI), resin modified GI (Fuji II LC, RMGI) and nano-ionomer (Ketac N100, NI) to enamel, dentin and cementum substrates. Materials and Methods: Forty-five lower molars were sectioned above the cemento-enamel junction. The occlusal surfaces were ground flat to obtain enamel and dentin substrates, meanwhile the cervical one-third of the root portion were utilized to evaluate the bonding efficacy to cementum substrate. Each substrate received microcylinders from the three tested materials; which were applied according to manufacturer instructions. ?SBS was assessed using a universal testing machine. The data were analyzed using two-way analysis of variance (ANOVA) and Tukey's post-hoc test. Modes of failure were examined using stereomicroscope at 25 magnification. Interfacial analysis of the bonded specimens was carried out using environmental field emission scanning electron microscope. Results: Two-way ANOVA revealed that materials, substrates and their interaction had a statistically significant effect on the mean ?SBS values at P values; ?0.0001, 0.0108 and 0.0037 respectively. RMGI showed statistically significant the highest ?SBS values to all examined tooth substrates. CGI and RMGI show substrate independent bonding efficiency, meanwhile; NI showed higher ?SBS values to dentin and cementum compared to enamel. Conclusion: Despite technological development of GI materials, mainly the nano-particles use, better results have not been achieved for both investigations, when compared to RMGI, independent of tooth substrate. � 2015 Dental Investigations Society.

October University for Modern Sciences and Arts Established by Dr. Nawal El Degwi in 1996 copyright © 2019-2024

DSpace software copyright © 2002-2025 LYRASIS

  • Privacy policy
  • End User Agreement