Repository logo
Communities & Collections
All of MSAR
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "El-Kilany, A"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • No Thumbnail Available
    Item
    A NOVEL OVERSAMPLING TECHNIQUE TO HANDLE IMBALANCED DATASETS
    (European Council for Modelling and Simulation, 06/01/2020) Mahmoud, A; Ali, F; El-Kilany, A; Mazen, S
    With the amount of data is growing extensively in different domains in the recent years, the data imbalance problem arises frequently. A dataset is called imbalanced when the data of a certain class has significantly more instances than that of other classes of the same dataset. This imbalanced nature of the data negatively affects the performance of a classifier since misclassification of data may cause data analysis results to be inaccurate and hence leads to wrong business decisions. This paper presents a study of the different techniques that are used to handle the imbalanced dataset, and finally proposes a novel oversampling technique to tackle the binary classification of imbalanced dataset problem. © ECMS Mike Steglich, Christian Mueller, Gaby Neumann, Mathias Walther (Editors).

October University for Modern Sciences and Arts Established by Dr. Nawal El Degwi in 1996 copyright © 2019-2024

DSpace software copyright © 2002-2025 LYRASIS

  • Privacy policy
  • End User Agreement
  • Send Feedback