Repository logo
Communities & Collections
All of MSAR
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Diab, A."

Filter results by typing the first few letters
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Item
    Comparative genetics of drought tolerance
    (CIHEAM, 2000) E. Sorrells, M.; Diab, A.; Nachit, M.
    This is a review of recent research on drought tolerance among grass species with a comparative genetics perspective. New technologies for evaluating, dissecting, and mapping components of drought tolerance as well as the transfer of this information among species is accelerating the understanding of this phenomenon. In addition, exploitation of the genetic variation and evolutionary advantages of certain species can enhance our knowledge and provide a source of genes for transfer to other species.
  • Loading...
    Thumbnail Image
    Item
    Emergence of cosmic space and minimal length in quantum gravity: a large class of spacetimes, equations of state, and minimal length approaches
    (INDIAN ASSOC CULTIVATION SCIENCE, 2016) Tawfik, A.; Diab, A.
    We argue that the modified Landau-Raychaudhuri equations should first be analysed in a large class of spacetimes and in dependence on various equations of states, before endorsing any conclusion about (non) singular Big Bang. From the corrected entropy-area law in a large class of metrics, the generalized uncertainty principle (GUP) and the modified dispersion relation (MDR) approaches, and various equations of states, the modified Friedmann equations are derived. They are applied on Landau-Raychaudhuri equations in emergence of cosmic space framework from fixed point method. We show that any conclusion about (non) singular Big Bang is simply badly model-dependent, especially when utilizing GUP and MDR approaches, which can not replace a good theory for quantum gravity. We conclude that the various quantum gravity approaches, metrics and equations of state lead to different modifications in Friedmann and Landau-Raychaudhuri equations and thus to different (non) singular solutions for Big Bang theory.

October University for Modern Sciences and Arts Established by Dr. Nawal El Degwi in 1996 copyright © 2019-2024

DSpace software copyright © 2002-2025 LYRASIS

  • Privacy policy
  • End User Agreement
  • Send Feedback