Repository logo
Communities & Collections
All of MSAR
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Deifalla, A."

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Item
    Effect of hybrid-fiber- reinforcement on the shear behavior of high-strength-concrete beams
    (Frontiers Media S.A., 2023-01) Awad, Ahmed; Tawfik, Maged; Deifalla, A.; Ahmad, Mahmood; Sabri, Mohanad Muayad Sabri; El-said, Amr
    The shear behavior of concrete beams is highly affected by the implementation of better performance concrete. Hybrid fibers addition to concrete mixture has proven to improve the performance compared to just using single type of fiber. Thus, in this current study, the shear behavior of hybrid-fiber-reinforced-high-strength- concrete beams was investigated experimentally. In addition, the effect of the span-to-depth ratio and the transverse reinforcement ratio were examined. Results showed that, when .45% of the cement weight is replaced with polypropylene fiber and 7% of the cement weight is replaced with steel fibers, the shear strength of the beam was enhanced by 18% in comparison to the control beam. The Formation and progression of cracks were also better controlled. The behavior of hybrid-polypropylene-steel-fibers-high-strength-concrete beams was observed to be comparable to that of conventional concrete ones as the shear strength increased with the decrease in span to depth ratio or the increase in transverse reinforcing ratio. A non-linear numerical model was developed and validated using the experimental results. The shear capacities of beams were calculated using ACI, which was compared to experimental and numerical results. The ACI’s calculations were conservative when compared with the experimental or numerical results. The coefficient of variance between the ACI and experimental shear capacity results was 4.8%, while it was 9.2% between the ACI and numerical shear capacity results.

October University for Modern Sciences and Arts Established by Dr. Nawal El Degwi in 1996 copyright © 2019-2024

DSpace software copyright © 2002-2025 LYRASIS

  • Privacy policy
  • End User Agreement
  • Send Feedback