Browsing by Author "Allam, S."
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Modeling perforates in mufflers using two-ports(ASME-AMER SOC MECHANICAL ENG, 2010) Elnady, T.; Abom, M.; Allam, S.One of the main sources of noise of a vehicle is the engine where its noise is usually damped by means of acoustic mufflers A very common problem in the modeling of automotive mufflers is that of two flow ducts coupled through a perforate A new segmentation approach is developed here based on two port analysis techniques in order to model perforated pipes using general two port codes which are widely available Examples are given for simple muffler configurations and the convergence of the technique is investigated based on the number of segments used The results are compared with closed form solutions form the literature Finally an analysts of a complicated multi chamber perforated muffler system is presented The two port simulation results show good agreement with both the measurements and the simulations using the classical four port elements [DOI 10 1115/1 4001510]Item A New Type of Muffler Based on Microperforated Tubes(ASME-AMER SOC MECHANICAL ENG, 2011) Allam, S.; Abom, M.Microperforated plate (MPP) absorbers are perforated plates with holes typically in the submillimeter range and perforation ratios around 1%. The values are typical for applications in air at standard temperature and pressure (STP). The underlying acoustic principle is simple: It is to create a surface with a built in damping, which effectively absorbs sound waves. To achieve this, the specific acoustic impedance of a MPP absorber is normally tuned to be of the order of the characteristic wave impedance in the medium (similar to 400 Pa s/m in air at STP). The traditional application for MPP absorbers has been building acoustics often combined with a so called panel absorber to create an absorption peak at a selected frequency. However, MPP absorbers made of metal could also be used for noise control close to or at the source for noise control in ducts. In this paper, the possibility to build dissipative silencers, e. g., for use in automotive exhaust or ventilation systems, is investigated. [DOI: 10.1115/1.4002956]