Browsing by Author "Ali, Hager R"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item A Fully Integrated Biorefinery Process for the Valorization of Ulva fasciata into Different Green and Sustainable Value-Added Products(MDPI AG, 2023-04) El-Gendy, Nour Sh; Nassar, Hussein N; Ismail, Abdallah R; Ali, Hager R; Ali, Basma Ahmed; Abdelsalam, Khaled M; Mubarak, ManalIn the framework of a sustainable marine bioeconomy, the present work describes an advanced, eco-friendly, fully integrated biorefinery process for marine Ulva fasciata macroalgae. That would serve as a solution for ecosystem bioremediation, an effective utilization of marine macroalgal resources, and a new initiative to promote a green and low-carbon economy. Ulva fasciata biomass can be utilized as an organic fertilizer with total N, P2O5 , and K2O contents of 3.17% and a C/N ratio of 11.71. It can also be used as a solid biofuel with a sufficient calorific value of 15.19 MJ/kg. It has high carbohydrate content and low lignin content of approximately 44.85% and 1.5%, respectively, which recommend its applicability in bioethanol and biobutanol production. Its protein, fiber, lipid, and ash contents of approximately 13.13%, 9.9%, 3.27%, and 21%, respectively with relatively high concentrations of omega-3 fatty acids (n-3 PUFAs) and omega-9 fatty acids (n-9 MUFAs) and relatively low omega-6 fatty acids (n-6 PUFAs) and a n-6/n-3 ratio of 0.13 also recommend its applicability as food additives and animal feeders. Moreover, the suggested sequential zero-waste biomass residue process yielded 34.89% mineral-rich water extract (MRWE), 2.61% chlorophylla,b, 0.41% carotenoids, 12.55% starch, 3.27% lipids, 22.24% ulvan, 13.37% proteins, and 10.66% cellulose of Ulva fasciata dry weight. The efficient biocidal activity of extracted ulvan against pathogenic microorganisms and sulfate-reducing bacteria recommends its application for medical purposes, water densification, and mitigation of microbially induced corrosion in the oil and gas industry.Item Waste prosperity: Mandarin (Citrus reticulata) peels inspired SPION for enhancing diesel oil biodesulfurization efficiency by Rhodococcus erythropolis HN2(Elsevier, 6/15/2021) Nassar, Hussein N; Ali, Hager R; El-Gendy, Nour ShTo enrich the activity and the lifetime of the selective desulfurizing Rhodococcus erythropolis HN2, a novel uni-pot eco-friendly, rapid, energy-saving, sustainable, simple, and green hydrothermal precipitation is applied to prepare superparamagnetic iron oxide nanoparticles (SPION) using the widely abundant and costless mandarin (Citrus reticulata) peels agro/domestic waste. X-ray diffraction, dynamic light scattering, zeta potential measurement, vibrating sample magnetometer, scanning electron microscope, high-resolution transmission electron microscope, and X-ray photoelectron spectroscopy revealed crystalline, highly stable spherical shaped Fe3O4 NPs with 11.58 nm average size and 51.12 emu/g magnetic saturation. The green biofunctionalized SPION proved to be non-toxic for HN2 and used for its magnetization, recording 24.97 emu/g at the optimum SPION/biomass ratio of 0.9 g/g. The first-order kinetic model described well the biodesulfurization profile of thiophenic model oil. The magnetized HN2 gained the advantage of tolerance for relatively high oil feed concentrations, higher BDS efficiency, and easier separation by applying an external magnetic field beside its efficient reusability for six consecutive times keeping approximately 80% of its initial activity. In a 120 h biphasic batch BDS process (30% v/v oil/water), the green magnetized HN2 removed approximately 86% and 96% of the 500 mg/L and 690 mg/L total sulfur content of a thiophenic model oil and a hydrodesulfurized diesel oil under mild operating conditions, respectively.