Browsing by Author "Aledaily, Arwa N"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Comprehensive design and analysis of thin film Sb2S3/CIGS tandem solar cell: TCAD simulation approach(IOP Publishing Ltd, 2024-06) Salem, Marwa S; Shaker, Ahmed; Aledaily, Arwa N; Alanazi, Adwan; Al-Dhlan, Kawther A; Okil, MohamedThis research presents a design and analysis of a tandem solar cell, combining thin film wide bandgap Sb2S3 (1.72 eV) and narrow bandgap CIGS (1.15 eV) for the top and bottom sub-cells, respectively. The integration of all thin film layers enhances flexibility, rendering the tandem solar cell suitable for applications such as wearable electronics. To optimize the power conversion efficiency (PCE) of the tandem solar device, advanced technology computer-aided design (TCAD) simulation tools are employed to estimate loss mechanisms and fine-tune parameters for each layer. An experimentally validated optoelectronic model is introduced, calibrated and validated against fabricated reference solar cells for the individual top and bottom cells. The calibrated model is then utilized to propose optimization routines for the Sb2S3/CIGS tandem solar cell. The initial tandem cell exhibits a JSC of 15.72 mA cm−2 and a PCE of 15.36%. The efficiency drop in the tandem configuration is identified primarily in the top cell. A systematic optimization process for the top cell is initiated, exploring various configurations, including HTL-free and ETL-free setups. Moreover, an np homojunction structure for the top cell is proposed. Optimization routines are applied that involve determining optimal thickness and doping concentration of the n-layer, investigating the effect of p-layer doping concentration, and exploring the influence of the work function of the front contact. As a result, the tandem cell efficiency is significantly improved to 23.33% at the current matching point (CMP), with a J SC of 17.15 mA cm−2. The findings contribute to the advancement of thin-film tandem solar cell technology, showcasing its potential for efficient and flexible photovoltaic applications .Item Design considerations of CdSe solar cells for indoor applications under white LED illumination(Elsevier B.V, 2024-07) Salem, Marwa S; Shaker, Ahmed; Okil, Mohamed; Li, Luying; Chen, Chao; Aledaily, Arwa N; Al-Dhlan, Kawther A; Zekry, AbdelhalimThis work sheds light on the potential of Cadmium Selenide (CdSe) solar cells for indoor applications. CdSe boasts a wide direct bandgap, high carrier mobility, and a high absorption coefficient, making it an attractive candidate for harnessing ambient indoor light. Our study centers around an experimental solar cell architecture composed of FTO/CdSe/PEDOT:PSS/CuI/ITO, which exhibits a power conversion efficiency (PCE) of 6.00 %. Through a meticulous analysis of the core technological aspects of this cell, we successfully replicate the measured current-voltage characteristics and other experimental data, affirming the validity of our simulation modeling approach. Moving forward, we delve into the design and optimization of CdSe-based solar cells under white LED illumination. We emphasize the pivotal role of a double-hole transport layer (HTL) configuration over a single HTL, with a focus on optimizing the alignment between the HTL/back contact and HTL/absorber interfaces. The strategic incorporation of a heavily doped p-type HTL material, boasting both a deep valence band maximum (VBM) and a shallow conduction band minimum (CBM), is identified as paramount, especially for a deep VBM absorber like CdSe. Adding double HTL materials also facilitates efficient hole collection within the CdSe thin film while mitigating undesirable electron-hole recombination at the critical interface between the hole collection layer and the electrode. The implementation of a double HTL configuration based on CuI/ZnTe:Cu or CuI/BCS significantly enhances performance, resulting in a PCE in the order of 20 % under 200 lux and 2900 K LED illumination. Moreover, we introduce the single HTL design to provide other alternatives for efficiency boosting. Upon increasing the work function of the front contact, it is found that the valence band offset between the HTL and the absorber can be engineered, resulting in a PCE above 21.5 %.Item Full optoelectronic simulation of all antimony chalcogenide thin film tandem solar cell: Design routes from 4-T to 2-T configuration(Ain Shams University, 2024-06) Salem, Marwa S; Shaker, Ahmed; Chen, Chao; Li, Luying; Abouelatta, Mohamed; Aledaily, Arwa N; Zein, Walid; Okil, MohamedAntimony chalcogenide, as a newcomer to light harvesting materials, is regarded as an auspicious contender for incorporation as a photoactive layer in thin film tandem solar cells (TFTSCs). The current study introduces the design of all-antimony chalcogenide TFTSC comprised of an Sb2S3 (1.7 eV) front subcell and an Sb2Se3 (1.2 eV) rear subcell. The challenges to migrating from four-terminal (4-T) to two-terminal (2-T) designs are highlighted and possible solutions are proposed. To commence, a calibration procedure for the two subcells is conducted in alignment with experimental investigations. The benchmarked solar cells yield a power conversion efficiency (PCE) of 8.08 % for the upper subcell and 10.58 % for the lower subcell. Subsequently, upon integration of both subcells within the initial 4-T Sb2S3/Sb2Se3 TFTSC, the resultant PV cell attains a PCE of 12.27 %. Before transitioning it to a more efficient 2T tandem configuration, we explore alternative inorganic HTL materials to the Spiro-OMeTAD HTL to overcome its practical considerations. Cu2O is found to be the best HTL alternative to be included for both subcells. Upon stacking into the tandem structure, the combined cell exhibited an efficiency of 15.68 % and a notable Jsc of 16.23 mA/cm2 . To further enhance the tandem performance, the device structure is optimized by engineering the CBO of two sub-cells and employing a double ETL design for the front sub-cell. At the considered current matching criterion, the tandem device PCE and Jsc are boosted to 27.86 % and 17.60 mA/ cm2 , respectively. Based on this full optoelectronic analysis, developed in the Silvaco TCAD environment, a 2-T all antimony chalcogenide tandem configuration can be realized and optimized, paving the way for future experimental endeavors.