DIVERSITY OF ACTIVE CONSTITUENTS IN CICHORIUM ENDIVIA AND CYNARA CORNIGERA EXTRACTS

Show simple item record

dc.contributor.author Ezzat, Shahira M
dc.contributor.author K. Hegazy, Ahmad
dc.contributor.author B. Qasem, Iman
dc.contributor.author S. Ali-Shtayeh, Mohamed
dc.date.accessioned 2019-10-20T08:11:18Z
dc.date.available 2019-10-20T08:11:18Z
dc.date.issued 2015
dc.identifier.citation 1. Abdelly, C. (2007) Salinity effects on polyphenol content and antioxidant activities in leaves of the halophyte Cakile maritime. Plant Physiol. Biochem. 45, 244–249. 2. Amic, D., Davidovic-Amic, D., Beslo, D., Trinajstic, N. (2003) Structure-radical scavenging activity relationships of flavonoids. Croat. Chem. Acta 76, 55–61. 3. Anusha, M., Venkateswarlu, M., Prabhakaran, V., Taj, S. S., Kumari, B. P., Ranganayakulu, D. (2011) Hepatoprotective activity of aqueous extract of Portulaca oleracea in combination with lycopene in rats. Indian J. Pharmacol. 43, 563–567. 4. Bajpai, M., Pande, A., Tewari, S. K., Prakash, D. (2005) Phenolic contents and antioxidant activity of some food and medicinal plants. Int. J. Food Sci. Nutr. 56, 287–291. 5. Balasundram, N., Sundram, K., Sammar, S. (2006) Phenolic compounds in plants and agri-industrial by-products. Antioxidant activity, occurrence, and potential uses. Food Chem. 1, 191–203. 6. Barbetw, P., Fardella, G., Chiappini, I., Scarcia, V., Brent, J. A., Rumack, B. H. (1993) Role of free radicals in toxic hepatic injury II. Clin. Toxicol. 31, 173–196. 7. Ben Hod, G., Basnizki, Y., Zohary, D., Mayer, A. M. (1992) Cynarin and chlorogenic acid content in germinating seeds of globe artichoke (Cyanara scolymus L.). J. Plant Breed. Genet. 46, 63–68. 8. Brás, H., de Oliveira, H., Nakashimab, T., Filhoc, J., de Souza, D., Frehse, F. L. (2001) HPLC analysis of flavonoids in Eupatorium littorale. J. Brazil Chem. Soc. 12, 243–246. 9. Chinou, I., Harvala, C. (1997) Polyphenolic constituents from the leaves of two Cynara species growing in Greece. Planta Med. 63, 469–470. 10. Chong, K. P., Rossall, S., Atong, M. (2009) In vitro antimicrobial activity and fungitoxicity of syringic acid, caffeic acid and 4-hydroxybenzoic acid against Ganoderma Boninense. J. Agric. Sci. 1, 15–20. 11. Clifford, M. N., Zheng, W., Kuhnert, N. (2006) Profiling the chlorogenic acids of aster by HPLC-MSn. Phytochem. Anal. 17, 384–393. 12. Dimitrios, K. P., Constantin, E., Harrala, C. (2000) Achemometric comparison of three taxa of Scabiosa L.s.1. Plant Biosyst. 134, 67–70. 13. Djeridane, M., Yousfi, B., Nadjemi, D., Boutassouna, P., Stocker, N. (2006) Antioxidant activity of some Algerian medicinal plants extracts containing phenolic compounds. Food. Chem. 97, 654–660. 14. DuPont, M. S., Mondin, Z., Williamson, G., Price, K. R. (2000) Effect of variety, processing, and storage on the flavonoid glycoside content and composition of lettuce and endive. J. Agr. Food Chem. 48, 3957–3964. 15. Elsayed, S. M., Nazif, N. M., Hassan, R. A., Hassanein, H. D., Elkholy, Y. M., Gomaa, N. S., Shahat, A. A. (2012) Chemical and biological constituents from the leaf extracts of the wild Artichoke (Cynara cornigera). Int. J. Pharm. Sci. 4, 396–400. 16. Falleh, H., Ksouri, R., Chaieb, K., Karray-Bouraoui, N., Trabelsi, N., Boulaaba, M., Abdelly, C. (2008) Phenolic composition of Cynara cardunculus L. organs, and their biological activities. C. R. Biol. 331, 372–379. 17. Fernald, M. L. (1950) Gray’s Manual of Botany. A Handbook of the Flowering Plants and Ferns of the Central and Northeastern United States and Adjacent Canada, Eighth (Centennial) Edition Illustrated. American Book Company, New York. 18. Fritsche, J., Christaan, M., Dachtler, B. M., Zhang, H., Jan, G., Lammers, A. (2002) Isolation, characterization and determination of minor artichoke (Cynara scolymus L.) leaf extract compounds. Eur. Food Res. Technol. 215, 149–157. 19. Gebhardt, R. (1997) Antioxidative protective properties of extract from leaves of the Artichoke (Cynara scolymus L.) against hydroperoxide-induced oxidative stress in cultured rat hepatocytes. Toxicol. Appl. Pharm. 144, 279–286. 20. Glässgen, W. E., Metzger, J. W., Heuer, S., Strack, D. (1993) Betacyanins from fruits of Basella rubra. Phytochemistry 33, 1525–1527. 21. Gruz, J., Ayaz, F. A., Torun, H., Strand, M. (2011) Phenolic acid content and radical scavenging activity of extracts from medlar (Mespilus germanica L.) fruit at different stages of ripening. Food Chem. 124, 271–277. 22. Gupta, V. K., Garg, M., Gupta, M. (2010) Recent updates on free radicals scavenging flavonoids: An overview. Asian J. Plant. Sci. 9, 108–117. 23. Gutierrez-Lugo, M. T., Singh, M. P., Maiese, W. M., Timmermann, B. N. (2002) New antimicrobial cycloartane triterpenes from Acalypha communis. J. Nat. Prod. 65, 872–875. 24. Hammouda, F. M. (1993) Quantitative determination of the active constituents in Egyptian cultivated Cynara scolymus. Int. J. Pharmacog. 31, 299–304. 25. Helena, S., Taleb-Contini, S. K., Batista Da Costa, F., Rodrigues de Oliveira, D. C. (2007) Detection of flavonoids in glandular trichomes of Chromolaena species (Eupatorieae, Asteraceae) by reversedphase high-performance liquid chromatography. Braz. J. Pharmaceut. Sci. 43, 220–228. 26. Innocenti, M., Gallori, S., Giaccherini, C., Ieri, F., Franco, F., Vincieri, M. N. (2005) Evaluation of the phenolic content in the aerial parts of different varieties of Cichorium intybus L. J. Agric. Food Chem. 53, 6497–6502. 27. Judentiene, A., Budiene, J. (2008) Volatile constituents from aerial parts and roots of Cichorium intybus L. (chicory) grown in Lithuania. Chemija 19, 25–28. 28. Khadem, S., Robin, J., Marles, K. (2010) Monocyclic phenolic acids; hydroxy- and polyhydroxybenzoic acids: occurrence and recent bioactivity studies. Molecules 15, 7985–8005. 29. Kisiel, W., Michalska, K., Szneler, E. (2004) Norisoprenoids from aerial parts of Cichorium pumilum. Biochem. Syst. Ecol. 32, 343–346. 31. Kukic, J., Popović, V., Petrović, S., Mucaji, P., Ćirić, A., Stojković, D., Sokovic, M. (2008) Antioxidant and antimicrobial activity of Cynara cardunculus extracts. Food Chem. 107, 861–868. 32. Li, H., Xia, N., Brausch, I., Yao, Y., Forstemann, U. (2004) Flavonoids from artichoke (Cynara Scolymus L.) up-regulate endothelial-type nitric-oxide synthase gene expression in human endothelial cells. J. Pharmacol. Exp. Ther. 310, 926–932. 33. Liu, Y., Hartley, D. P., Liu, J. (1998) Protection against carbon tetrachloride hepatotoxicity by oleanolic acid is not mediated through metallothionein. Toxicol. Lett. 95, 77–85. 34. Llorach, R., Espin, J. C., Tomas-Barberan., F. A., Ferreres, F. (2002) Artichoke (Cynara scolymus L.) byproducts as a potential source of health-promoting antioxidant phenolics. J. Agric. Food Chem. 50, 3458–3464. 35. Llorach, R., Tomás-Barberán, F. A., Ferreres, F. (2004) Lettuce and chichory byproducts as a source of antioxidant phenolic extracts. J. Agric. Food Chem. 52, 5109–5111. 36. Manach, C., Scalbert, A., Morand, C., Rémésy, C., Jiménez, L. (2004) Polyphenols, food sources and bioavailability. Amer. J. Clin. Nutr. 79, 727–747. 36a. Michalska, K., Kisiel, W. (2007) Further sesquiterpene lactones and phenolics from Cichorium spinosum. Biochem. Syst. Ecol. 35, 714–716. 37. Miguel, M. G. (2010) Antioxidant activity of medicinal and aromatic plants. Flav. Frag. J. 25, 291– 312. 38. Mix, K. S., Mengshol, J. A., Benbow, U., Vincenti, M. P., Sporn, M. B., Brinckerhoff, C. E. (2001) Asynthetic triterpenoid selectively inhibits the induction of matrix metalloproteinases 1 and 13 by inflammatory cytokines. Arthritis Rheum. 44, 1096–1104. 39. Orlovskaya, T. V., Luneva, I. L., Chelombit¢ko, V. A. (2007) Chemical composition of Cynara scolymus leaves. Chem. Nat. Compd. 43, 239–240. 40. Papetti, A., Daglia, M., Aceti, C., Sordelli, B., Spini, V., Carazzone, C., Gazzani, G. (2008) Hydroxycinnamic acid derivatives occurring in Cichorium endivia vegetables. J. Pharmaceut. Biomed. 48, 472–476. 41. Papetti, A., Daglia, M., Gazzani, G. (2002) Anti- and pro-oxidant water soluble activity of Cichorium genus vegetables and effect of thermal treatment. J. Agric. Food Chem. 50, 4696–4704. 42. Pinelli, P., Agostini, F., Comino, C., Lanteri, S., Portis, E., Romani, A. (2007) Simultaneous quantification of cafeoyl esters and flavonoids in wild and cultivated cardoon leaves. Food Chem. 105, 1695–1701. 43. Pugazhendhi, D., Pope, G. S., Darbre, P. D. (2005) Oestrogenic activity of p-hydroxybenzoic acid (common metabolite of paraben esters) and methylparaben in human breast cancer cell lines. J. Appl. Tox. 25, 301–309. 44. Sareedenchai, V., Zidorn, C. (2010) Flavonoids as chemosystematic markers in the tribe Cichorieae of the Asteraceae. Biochem. Syst. Ecol. 38, 935–957. 45. Seto, M., Miyase, T., Umehara, K., Ueno, A., Hirano, Y., Otani, N. (1988) Sesquiterpene lactones from Cichorium endivia L., and C. intybus L. and cytotoxic activity. Chem. Pharm. Bull. 36, 2423– 2429. 46. Singh, S., Srivastava, R., Choudhary, S. (2010) Antifungal and HPLC analysis of the crude extracts of Acorus calamus, Tinospora cordifolia and Celestrus paniculatus. J. Agric. Technol. 6, 149–158. 47. Sofowara, A. (1993) Medicinal Plants and Traditional Medicine in Africa. Spectrum Books Ltd., Ibadan, Nigeria. 48. Somova, L. O., Nadar, A., Rammanan, P., Shode, F. O. (2003) Cardiovascular, antihyperlipidemic and antioxidant effects of oleanolic and ursolic acids in experimental hypertension. Phytomedicine 10, 115–121. 49. Stanojević, L., Stanković, M., Nikolić, V., Nikolić, L., Ristić, D., Čanadanovic-Brunet, J., Tumbas, V. (2009) Antioxidant activity and total phenolic and flavonoid contents of Hieracium pilosella L. extracts. Sensors 9, 5702–5714. 50. Tona, L., Kambu, K., Mesia, K., Cimanga, K., Apers, S., de Bruyne, T., Pieters, L., Totte, J., Vlietinck, A. J. (1999) Biological screening of traditional preparations from some medicinal plants used as antidiarrhoeal in Kinshasa, Congo. Phytomedicine 6, 59–66. 51. Wang, J., Dingqianglu, H., Jiang, B., Wang, J., Ling, X., Ouyang, H. C. P. (2010) Discrimination and classification of tobacco wastes by identification and quantification of polyphenols with LC–MS/MS. J. Serbian Chem. Soc. 75, 875–891. 52. Wang, M., Simon, J. E., Aviles, I. F., He, K., Zheng, Q. Y., Tadmor, Y. (2003) Analysis of antioxidative phenolic compounds in artichoke (Cynara scolymus L.). J. Agric. Food Chem. 51, 601–608. 53. Wang, H., Wang, Z., Guo, W. (2008) Comparative determination of ursolic acid and oleanolic acid of Macrocarpium officinalis (Sieb. et Zucc.) Nakai by RP-HPLC. Industrial Crops and Products 28, 328–332. 54. Warashina, T., Miyase, T. (2006) Sesquiterpenes from the roots of Cichorium endivia. Fitoterapia 77, 354–357. 55. Zaman, R., Akhtar, M. S., Khan, M. S. (2006) Anti-ulcerogenic screening of Cichorium intybus L. leaf in indomethacin treated rats. Int. J. Pharm. 2, 166–170. 56. Zhu, X., Zhang, H., Lo, R. (2004) Phenolic compounds from the leaf extract of artichoke (Cynara scolymus L.) and their antimicrobial activities. J. Agric. Food Chem. 52, 7272–7278. 57. Zhu, X. F., Zhang, H. X. (2004) Flavonoids of Cynara scolymus. Chem. Nat. Comp. 40, 600–601. en_US
dc.identifier.other https://doi.org/10.1556/ABiol.66.2015.1.9
dc.identifier.uri http://central-library.msa.edu.eg:8009/xmlui/handle/123456789/427
dc.description.abstract The present study attempts to explore the phytochemical constituents of different extracts from Cynara cornigera and Cichorium endivia plant materials. The two species studied are native in Egypt. Five different solvents, viz., aqueous, methylene chloride, petroleum ether, ethyl acetate, and n-butanol were used. Phytochemical analysis revealed the presence of phenols, flavonoids, sterols (stigmasterol and betasitosterol), terpenes (α-amyrin, ursolic and oleanolic acid), and hydrocarbons (n-alkane), the latter found in low amount. The ethyl acetate and water extracts of C. cornigera root showed lower mass fractions of phenolic compounds ranged from 20 to 81 g/100 g, and higher amounts in ethyl acetate extract of the inflorescences and butanol extract of the root where values ranged from 195 to 399 g/100 g. The β-sitosterol and stigmasterol were present in all plant extracts. Oleanolic and ursolic acids were detected in roots, leaves and inflorescences of C. cornigera and in C. endivia shoot. The ethyl acetate extracts from C. cornigera leaf and inflorescence attained higher chemical diversity than the other extracts. Alternatively, sterols and triterpenes were the major constituents. The high chemical diversity of active constituents justifies the future potential use of the two species at commercial level. en_US
dc.description.sponsorship Acta Biologica Hungarica en_US
dc.description.uri https://www.scimagojr.com/journalsearch.php?q=12453&tip=sid&clean=0
dc.language.iso en en_US
dc.publisher Acta Biologica Hungarica en_US
dc.relation.ispartofseries Acta Biologica Hungarica;1
dc.subject University of Sterols en_US
dc.subject triterpenes en_US
dc.title DIVERSITY OF ACTIVE CONSTITUENTS IN CICHORIUM ENDIVIA AND CYNARA CORNIGERA EXTRACTS en_US
dc.type Article en_US
dc.identifier.doi https://doi.org/10.1556/ABiol.66.2015.1.9
dc.Affiliation October University for modern sciences and Arts (MSA)


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search MSAR


Advanced Search

Browse

My Account