Constancy of Speed of Light in Inertial Frames

Show simple item record

dc.contributor.author Radi, Hafez A.
dc.contributor.author Ward, Thomas E.
dc.date.accessioned 2020-06-16T09:13:06Z
dc.date.available 2020-06-16T09:13:06Z
dc.date.issued 05/01/2020
dc.identifier.citation Einstein, A. (1905) Annalen der Physik, 322 (10), pp. 891-921. Cited 1459 times. doi: 10.1002/andp.19053221004 2 Botermann, B., Bing, D., Geppert, C., Gwinner, G., Hänsch, T.W., Huber, G., Karpuk, S., (...), Saathoff, G. Test of time dilation using stored Li+ ions as clocks at relativistic speed (2014) Physical Review Letters, 113 (12), art. no. 120405. Cited 32 times. http://harvest.aps.org/bagit/articles/10.1103/PhysRevLett.113.120405/apsxml doi: 10.1103/PhysRevLett.113.120405 View at Publisher 3 Lambiase, G., Scardigli, F. Lorentz violation and generalized uncertainty principle (Open Access) (2018) Physical Review D, 97 (7), art. no. 075026. Cited 18 times. http://harvest.aps.org/v2/bagit/articles/10.1103/PhysRevD.97.075026/apsxml doi: 10.1103/PhysRevD.97.075003 View at Publisher 4 Afshordi, N., Magueijo, J. Critical geometry of a thermal big bang (2016) Physical Review D, 94 (10), art. no. 101301. Cited 10 times. http://harvest.aps.org/bagit/articles/10.1103/PhysRevD.94.101301/apsxml doi: 10.1103/PhysRevD.94.101301 View at Publisher 5 Magueijo, J. New varying speed of light theories (2003) Reports on Progress in Physics, 66 (11), pp. 2025-2068. Cited 168 times. doi: 10.1088/0034-4885/66/11/R04 View at Publisher 6 Webb, J.K., Flambaum, V.V., Churchill, C.W., Drinkwater, M.J., Barrow, J.D. Search for time variation of the fine structure constant (1999) Physical Review Letters, 82 (5), pp. 884-887. Cited 601 times. doi: 10.1103/PhysRevLett.82.884 View at Publisher 7 Duff, M.J., Okun, L.B., Veneziano, G. "On the number of fundamental constants," (2002) Journal of High Energy Physics, pp. 1-30. JHEP03(20202) 8 Adbo, A.A., Ackermann, M., Ajello, M., Asano, K., Atwood, W.B., Axelsson, M., Baldini, L., (...), Ziegler, M. A limit on the variation of the speed of light arising from quantum gravity effects (2009) Nature, 462 (7271), pp. 331-334. Cited 410 times. http://www.nature.com/nature/index.html doi: 10.1038/nature08574 View at Publisher 9 Hawking, S.W. The development of irregularities in a single bubble inflationary universe (1982) Physics Letters B, 115 (4), pp. 295-297. Cited 1454 times. doi: 10.1016/0370-2693(82)90373-2 View at Publisher 10 Marsh, M.C.D., Barrow, J.D., Ganguly, C. Inhomogeneous initial data and small-field inflation (2018) Journal of Cosmology and Astroparticle Physics, 2018 (5), art. no. 026. Cited 8 times. http://iopscience.iop.org/article/10.1088/1475-7516/2018/05/026/pdf doi: 10.1088/1475-7516/2018/05/026 View at Publisher 11 Shields, B.T., Morris, M.C., Ware, M.R., Su, Q., Stefanovich, E.V., Grobe, R. Time dilation in relativistic two-particle interactions (2010) Physical Review A - Atomic, Molecular, and Optical Physics, 82 (5), art. no. 052116. Cited 6 times. http://oai.aps.org/oai?verb=GetRecord&Identifier=oai:aps.org:PhysRevA.82.052116&metadataPrefix=oai_apsmeta_2 doi: 10.1103/PhysRevA.82.052116 View at Publisher 12 McGowan, R.W., Giltner, D.M., Sternberg, S.J., Lee, S.A. New measurement of the relativistic Doppler shift in neon (1993) Physical Review Letters, 70 (3), pp. 251-254. Cited 43 times. doi: 10.1103/PhysRevLett.70.251 View at Publisher 13 Saathoff, G., Karpuk, S., Eisenbarth, U., Huber, G., Krohn, S., Horta, R., Reinhardt, S., (...), Gwinner, G. Improved test of time dilation in special relativity (2003) Physical Review Letters, 91 (19). Cited 115 times. doi: 10.1103/PhysRevLett.91.190403 View at Publisher 14 Novotny, C., Huber, G., Karpuk, S., Reinhardt, S., Bing, D., Schwalm, D., Wolf, A., (...), Gwinner, G. Sub-Doppler laser spectroscopy on relativistic beams and tests of Lorentz invariance (2009) Physical Review A - Atomic, Molecular, and Optical Physics, 80 (2), art. no. 022107. Cited 20 times. http://oai.aps.org/oai?verb=GetRecord&Identifier=oai:aps.org:PhysRevA.80.022107&metadataPrefix=oai_apsmeta_2 doi: 10.1103/PhysRevA.80.022107 View at Publisher 15 Lindkvist, J., Sabín, C., Fuentes, I., Dragan, A., Svensson, I.-M., Delsing, P., Johansson, G. Twin paradox with macroscopic clocks in superconducting circuits (2014) Physical Review A - Atomic, Molecular, and Optical Physics, 90 (5), art. no. 052113. Cited 24 times. http://harvest.aps.org/bagit/articles/10.1103/PhysRevA.90.052113/apsxml doi: 10.1103/PhysRevA.90.052113 View at Publisher 16 Chen, J.-S., Brewer, S.M., Chou, C.W., Wineland, D.J., Leibrandt, D.R., Hume, D.B. Sympathetic Ground State Cooling and Time-Dilation Shifts in an Al 27 + Optical Clock (Open Access) (2017) Physical Review Letters, 118 (5), art. no. 053002. Cited 43 times. http://harvest.aps.org/bagit/articles/10.1103/PhysRevLett.118.053002/apsxml doi: 10.1103/PhysRevLett.118.053002 View at Publisher 17 Bailey, J., Borer, K., Combley, F., Drumm, H., Krienen, F., Lange, F., Picasso, E., (...), Hattersley, P.M. Measurements of relativistic time dilatation for positive and negative muons in a circular orbit (1977) Nature, 268 (5618), pp. 301-305. Cited 179 times. doi: 10.1038/268301a0 View at Publisher 18 Najjari, B., Surzhykov, A., Voitkiv, A.B. Relativistic time dilation and the spectrum of electrons emitted by 33-TeV lead ions penetrating thin foils (2008) Physical Review A - Atomic, Molecular, and Optical Physics, 77 (4), art. no. 042714. Cited 9 times. http://oai.aps.org/oai?verb=GetRecord&Identifier=oai:aps.org:PhysRevA.77.042714&metadataPrefix=oai_apsmeta_2 doi: 10.1103/PhysRevA.77.042714 View at Publisher 19 Webber, D.M., Tishchenko, V., Peng, Q., Battu, S., Carey, R.M., Chitwood, D.B., Crnkovic, J., (...), Wolfe, B. Measurement of the positive muon lifetime and determination of the Fermi constant to part-per-million precision (Open Access) (2011) Physical Review Letters, 106 (4), art. no. 041803. Cited 76 times. http://oai.aps.org/oai?verb=GetRecord&Identifier=oai:aps.org:PhysRevLett.106.041803&metadataPrefix=oai_apsmeta_2 doi: 10.1103/PhysRevLett.106.041803 View at Publisher 20 Delva, P., Lodewyck, J., Bilicki, S., Bookjans, E., Vallet, G., Le Targat, R., Pottie, P.-E., (...), Gill, P. Test of Special Relativity Using a Fiber Network of Optical Clocks (2017) Physical Review Letters, 118 (22), art. no. 221102. Cited 65 times. http://harvest.aps.org/bagit/articles/10.1103/PhysRevLett.118.221102/apsxml doi: 10.1103/PhysRevLett.118.221102 View at Publisher 21 MacArthur, D.W., Butterfield, K.B., Clark, D.A., Donahue, J.B., Gram, P.A.M., Bryant, H.C., Harvey, C.J., (...), Comtet, G. Test of the special-relativistic Doppler formula at =0.84 (1986) Physical Review Letters, 56 (4), pp. 282-285. Cited 22 times. doi: 10.1103/PhysRevLett.56.282 View at Publisher 22 Rainville, S., Thompson, J.K., Myers, E.G., Brown, J.M., Dewey, M.S., Kessler Jr., E.G., Deslattes, R.D., (...), Pritchard, D.E. A direct test of E = mc2 (2005) Nature, 438 (7071), pp. 1096-1097. Cited 98 times. http://www.nature.com/nature/index.html doi: 10.1038/4381096a View at Publisher 23 Poincaré, H. Sur La Dynamique De L'Electron (1905) Adunanza del 23 luglio, pp. 1-49. On the Dynamics of the Electron, English translation. 24 Cardano, G. Ars magna: or The Rules of Algebra Dover, p. 1993. 25 Cohen, A.G., Glashow, S.L. Very special relativity (2006) Physical Review Letters, 97 (2), art. no. 021601. Cited 201 times. http://oai.aps.org/oai?verb=GetRecord&Identifier=oai:aps.org:PhysRevLett.97.021601&metadataPrefix=oai_apsmeta_2 doi: 10.1103/PhysRevLett.97.021601 View at Publisher 26 Girelli, F., Livine, E.R. Special relativity as a noncommutative geometry: Lessons for deformed special relativity (2010) Physical Review D - Particles, Fields, Gravitation and Cosmology, 81 (8), art. no. 085041. Cited 11 times. http://oai.aps.org/oai?verb=GetRecord&Identifier=oai:aps.org:PhysRevD.81.085041&metadataPrefix=oai_apsmeta_2 doi: 10.1103/PhysRevD.81.085041 View at Publisher 27 Frank, P., Rothe, H. "über die Transformation der Raumzeitkoordinaten von ruhenden auf bewegte Systeme," (1911) Annalen der Physik., 34, pp. 528-825 en_US
dc.identifier.issn 19350090
dc.identifier.other https://doi.org/10.18576/AMIS/140303
dc.identifier.uri https://t.ly/qFvs
dc.description Scopus en_US
dc.description.abstract This article proves that speed of light in all uniformly moving inertial reference frames is absolute as postulated by Einstein. This is first done by considering light propagating with a speed c in all directions in an inertial frame of reference. If that frame is moving uniformly with a speed ν relative to a second stationary inertial frame, we assume that light in the second frame is propagating in all directions with a different speed cρ=ρ c. Consequently, modified transformation Equations are formed. The established Poincaré ellipsoidal light waves are then used to find the Equation that governs the relation of ρ at any speed ν. The analytical solution and numerical calculations to this equation yield a value ρ =1. This proves that speed of light propagates through empty space with speed c independent of the speed of the light source or the observer en_US
dc.description.uri https://www.scimagojr.com/journalsearch.php?q=21100197928&tip=sid&clean=0
dc.language.iso en_US en_US
dc.publisher Natural Sciences Publishing en_US
dc.relation.ispartofseries Applied Mathematics and Information Sciences;Volume 14, Issue 3, 1 May 2020, Pages 375-382
dc.subject October University for Lorentz transformations en_US
dc.subject Poincaré Ellipsoidal Light Waves en_US
dc.subject Special Relativity en_US
dc.title Constancy of Speed of Light in Inertial Frames en_US
dc.type Article en_US
dc.identifier.doi https://doi.org/10.18576/AMIS/140303
dc.Affiliation October University for modern sciences and Arts (MSA)


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search MSAR


Advanced Search

Browse

My Account