Absence of exponential sensitivity to small perturbations in nonintegrable systems of spins 1/2

Show simple item record

dc.contributor.author V. Fine, Boris
dc.contributor.author A. Elsayed, Tarek
dc.contributor.author M. Kropf, Chahan
dc.contributor.author S. de Wijn, Astrid
dc.date.accessioned 2020-02-26T09:16:17Z
dc.date.available 2020-02-26T09:16:17Z
dc.date.issued 2014
dc.identifier.citation 1 P. Gaspard, Chaos, Scattering and Statistical Mechanics (Cambridge University Press, Cambridge, 1998). 2 M. Rigol, V. Dunjko, and M. Olshanii, Nature 452, 854 (2008). 3 F. Haake, Quantum Signatures of Chaos (Springer-Verlag, Berlin, 2001). 4 L. F. Santos, F. Borgonovi, and F. M. Izrailev, Phys. Rev. E 85, 036209 (2012). 5 D. Poilblanc, T. Ziman, J. Bellissard, F. Mila, and G. Montambaux, Europhys. Lett. 22, 537 (1993). 6 P. van Ede van der Pals and P. Gaspard, Phys. Rev. E 49, 79 (1994). 7 M. L. Mehta, Random Matrices and the Statistical Theory of Energy Levels (Academic Press, New York, 1967). 8 O. Bohigas, M. J. Giannoni, and C. Schmit, Phys. Rev. Lett. 52, 1 (1984). 9 H. M. Pastawski, P. R. Levstein, G. Usaj, J. Raya, and J. Hirschinger, Physica A 283, 166 (2000). 10 V. A. Skrebnev and V. A. Safin, J. Phys. C: Solid State Phys. 19, 4105 (1986). 11 R. A. Jalabert and H. M. Pastawski, Phys. Rev. Lett. 86, 2490 (2001). 12 T. Prosen, Phys. Rev. E 65, 036208 (2002). 13 T. Prosen and M. Znidaric, J. Phys. A 35, 1455 (2002). 14 G. Benenti and G. Casati, Phys. Rev. E 65, 066205 (2002). 15 B. Eckhardt, J. Phys. A 36, 371 (2003). 16 P. Silvestrov, J. Tworzydlo, and C. Beenakker, Phys. Rev. E 67, 025204 (2003). 17 G. Veble and T. Prosen, Phys. Rev. E 72, 025202 (2005). 18 T. Gorin, T. Prosen, T. H. Seligman, and M. Znidaric, Physics Reports 435, 33 (2006). 19 P. Gaspard, M. E. Briggs, M. K. Francis, J. Sengers, R. Gammon, J. R. Dorfman, and R. Calabrese, Nature 394, 865 (1998). 20 C. P. Dettmann, E. G. D. Cohen, and H. van Beijeren, Nature 401, 875 (1999). 21 P. Grassberger and T. Schreiber, Nature 401, 875 (1999). 22 P. Gaspard, M. E. Briggs, M. K. Francis, J. Sengers, R. Gammon, J. R. Dorfman, and R. Calabrese, Nature 401, 876 (1999). 23 W. Rhim, A. Pines, and J. S.Waugh, Phys. Rev. B 3, 684 (1971). 24 C. P. Slichter, Principles of Magnetic Resonance, 3d Edition (Springer, Heidelberg, 1990). 25 G. Boutis, P. Cappellaro, H. Cho, C. Ramanathan, and D. Cory, J. Magn. Reson. 161, 132 (2003). 26 E. G. Sorte, B. V. Fine, and B. Saam, Phys. Rev. B 83, 064302 (2011). 27 S. W. Morgan, V. Oganesyan, and G. S. Boutis, Phys. Rev. B 86, 214410 (2012). 28 S. A. Rice and R. Kosloff, J. Phys. Chem. 86, 2153 (1982). 29 R. Vilela Mendes, J. Phys. A: Math. Gen. 24, 4349 (1991). 30 P. Gaspard, in Quantum Chaos - Quantum Measurement, edited by P. Cvitanovic et al. (Kluwer Academic Publishers, 1992), pp. 19–42. 31 M. H. Partovi, Phys. Rev. A 45, R555 (1992). 32 J. Ford and M. Ilg, Phys. Rev. A 45, 6165 (1992). 33 L. Ballentine and J. Zibin, Phys. Rev. A 54, 3813 (1996). 34 A. S. de Wijn, B. Hess, and B. V. Fine, Phys. Rev. Lett. 109, 034101 (2012). 35 A. S. de Wijn, B. Hess, and B. V. Fine, eprint: arXiv:1209.1468, accepted for publication in J. Phys. A. 36 G. Benettin, L. Galgani, A. Giorgilli, and J. M. Strelcyn, Meccanica 15, 9 (1980). 37 If D¯ 0 has no projection on d¯max(0), the growth of |D¯ (t)| is controlled by the second largest Lyapunov exponent, which is very close to λmax. In general, Lyapunov growth emerging over time interval ∆t includes significant contributions from Lyapunov exponents λ in the range λmax − 1/∆t ≤ λ ≤ λmax. This fact does not change the conclusions of our analysis. 38 See the supplementary material. 39 C. Bartsch and J. Gemmer, Phys. Rev. Lett. 102, 110403 (2009). 40 T. A. Elsayed and B. V. Fine, Phys. Rev. Lett. 110, 070404 (2013). 41 J. I. Cirac and P. Zoller, Nat. Phys. 8, 264 (2012). 42 B. V. Fine, Int. J. Mod. Phys. B 18, 1119 (2004). 43 B. V. Fine, J. Stat. Phys. 112, 319 (2003). 44 B. V. Fine, Phys. Rev. Lett. 94, 247601 (2005). 45 S. W. Morgan, B. V. Fine, and B. Saam, Phys. Rev. Lett. 101, 067601 (2008). 46 B. Meier, J. Kohlrautz, en_US
dc.identifier.uri https://t.ly/JXke5
dc.description MSA Google Scholar en_US
dc.description.abstract We show that macroscopic nonintegrable lattices of spins 1/2, which are often considered to be chaotic, do not exhibit the basic property of classical chaotic systems, namely, exponential sensitivity to small perturbations. We compare chaotic lattices of classical spins and nonintegrable lattices of spins 1/2 in terms of their magnetization responses to imperfect reversal of spin dynamics known as Loschmidt echo. In the classical case, magnetization exhibits exponential sensitivity to small perturbations of Loschmidt echoes, which is characterized by twice the value of the largest Lyapunov exponent of the system. In the case of spins 1/2, magnetization is only power-law sensitive to small perturbations. Our findings imply that it is impossible to define Lyapunov exponents for lattices of spins 1/2 even in the macroscopic limit. At the same time, the above absence of exponential sensitivity to small perturbations is an encouraging news for the efforts to create quantum simulators. The power-law sensitivity of spin 1/2 lattices to small perturbations is predicted to be measurable in nuclear magnetic resonance experiments. en_US
dc.description.sponsorship American Physical Society en_US
dc.description.uri https://www.scimagojr.com/journalsearch.php?q=21100855841&tip=sid&clean=0
dc.language.iso en en_US
dc.publisher American Physical Society en_US
dc.relation.ispartofseries Physical Review E;Volume 89 Issue 1 page: 1-12
dc.subject University of Exponential sensitivity en_US
dc.title Absence of exponential sensitivity to small perturbations in nonintegrable systems of spins 1/2 en_US
dc.type Article en_US
dc.Affiliation October University for modern sciences and Arts (MSA)


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search MSAR


Advanced Search

Browse

My Account