Management of cardiac fibrosis in diabetic rats; The role of peroxisome proliferator activated receptor gamma (PPAR-gamma) and calcium channel blockers (CCBs)

Show simple item record

dc.contributor.author Mohamad H.E.
dc.contributor.author Askar M.E.
dc.contributor.author Hafez M.M.
dc.contributor.other Department of Biochemistry
dc.contributor.other Faculty of Pharmacy
dc.contributor.other Zagazig University
dc.contributor.other Zagazig
dc.contributor.other Egypt; Department of Biochemistry
dc.contributor.other Faculty of Pharmacy
dc.contributor.other October for Modern Science and Arts University (MSA)
dc.contributor.other Egypt
dc.date.accessioned 2020-01-25T19:58:31Z
dc.date.available 2020-01-25T19:58:31Z
dc.date.issued 2011
dc.identifier.issn 17585996
dc.identifier.other https://doi.org/10.1186/1758-5996-3-4
dc.identifier.other PubMed ID :
dc.identifier.uri https://t.ly/rx8Wv
dc.description Scopus
dc.description.abstract Background: Diabetes mellitus (DM) and hypertension (HTN) are accused of being responsible for the development of the cardiac fibrosis due to severe cardiomyopathy. Methods. Blood glucose (BG) test was carried out, lipid concentrations, tumor necrosis factor alpha (TNF-?), transforming growth factor beta (TGF-?), matrix metalloproteinase (MMP-2), collagen-I and collagen-III were measured in male Albino rats weighing 179-219 g. The rats were divided into five groups, kept on either control diet or high fat diet (HFD), and simultaneously treated with rosiglitazone (PPAR-gamma) only for one group with 3 mg/kg/day via oral route for 30 days, and with rosiglitazone and felodipine combination for another group with 3 mg/kg/day and 5 mg/kg/day, respectively via oral route for 30 days. Results: Diabetic hypertensive (DH) rats which fed on a HFD, injected with streptozotocin (STZ) (i.p.) and obstruction for its right kidney was occurred develop hyperglycemia, hypertension, cardiac fibrosis, hypertriglyceridemia, hypercholesterolemia, increased TNF-?, increased TGF-?, decreased MMP-2, increased collagen-I and increased collagen-III, when compared to rats fed on control diet. Treating the DH rats with rosiglitazone only causes a significant decrease for BG levels by 52.79%, triglycerides (TGs) by 24.05%, total cholesterol (T-Chol) by 30.23%, low density lipoprotein cholesterol (LDL-C) by 40.53%, TNF-? by 20.81%, TGF-? by 46.54%, collagen-I by 48.11% and collagen-III by 53.85% but causes a significant increase for MMP-2 by 272.73%. Moreover, Treating the DH rats with rosiglitazone and felodipine combination causes a significant decrease for BG levels by 61.08%, blood pressure (BP) by 16.78%, TGs by 23.80%, T-Chol by 33.27%, LDL-C by 45.18%, TNF-? by 22.82%, TGF-? by 49.31%, collagen-I by 64.15% and collagen-III by 53.85% but causes a significant increase for MMP-2 by 290.91%. Rosiglitazone alone failed to decrease the BP in DH rats in the current dosage and duration. Conclusion: Our results indicate that the co-existence of diabetes and hypertension could induce cardiomyopathy which could further result in cardiac fibrosis, and that combination treatment with rosiglitazone and felodipine has a great protective role against the metabolic abnormalities, meanwhile, the treatment with rosiglitazone alone has a protective role with a minimal effect against these abnormalities and has no effect on decreasing BP in these cases which may lead to coronary artery diseases (CADs) in future. � 2011 Mohamad et al; licensee BioMed Central Ltd. en_US
dc.description.uri https://www.scimagojr.com/journalsearch.php?q=19700174930&tip=sid&clean=0
dc.language.iso English en_US
dc.relation.ispartofseries Diabetology and Metabolic Syndrome
dc.relation.ispartofseries 3
dc.subject cholesterol en_US
dc.subject collagen type 1 en_US
dc.subject collagen type 2 en_US
dc.subject collagen type 3 en_US
dc.subject felodipine en_US
dc.subject gelatinase A en_US
dc.subject glucose en_US
dc.subject lipid en_US
dc.subject low density lipoprotein cholesterol en_US
dc.subject rosiglitazone en_US
dc.subject streptozocin en_US
dc.subject transforming growth factor beta en_US
dc.subject triacylglycerol en_US
dc.subject tumor necrosis factor alpha en_US
dc.subject animal experiment en_US
dc.subject animal model en_US
dc.subject article en_US
dc.subject controlled study en_US
dc.subject diabetes mellitus en_US
dc.subject glucose blood level en_US
dc.subject glucose tolerance test en_US
dc.subject heart muscle fibrosis en_US
dc.subject hypercholesterolemia en_US
dc.subject hyperglycemia en_US
dc.subject hypertension en_US
dc.subject hypertriglyceridemia en_US
dc.subject lipid diet en_US
dc.subject male en_US
dc.subject nonhuman en_US
dc.subject priority journal en_US
dc.subject protein function en_US
dc.subject rat en_US
dc.title Management of cardiac fibrosis in diabetic rats; The role of peroxisome proliferator activated receptor gamma (PPAR-gamma) and calcium channel blockers (CCBs) en_US
dc.type Article en_US
dcterms.isReferencedBy Creager, M.A., Luscher, T.F., Cosentino, F., Beckman, J.A., Diabetes and vascular disease. Pathophysiology, clinical consequences, and medical therapy: Part I (2003) Circulation, 108 (12), pp. 1527-1532. , DOI 10.1161/01.CIR.0000091257.27563.32; Hayat, S.A., Patel, B., Khattar, R.S., Malik, R.A., Diabetic cardiomyopathy: Mechanisms, diagnosis and treatment (2004) Clinical Science, 107 (6), pp. 539-557. , DOI 10.1042/CS20040057; Adeghate, E., Molecular and cellular basis of the aetiology and management of diabetic cardiomyopathy: A short review (2004) Molecular and Cellular Biochemistry, 261 (1), pp. 187-191. , DOI 10.1023/B:MCBI.0000028755.86521.11; Zhi, Y.F., Prins, J.B., Marwick, T.H., Diabetic cardiomyopathy: Evidence, mechanisms, and therapeutic implications (2004) Endocrine Reviews, 25 (4), pp. 543-567. , DOI 10.1210/er.2003-0012; Gonzalez-Vilchez, F., Ayuela, J., Ares, M., Pi, J., Castillo, L., Martin-Duran, R., Oxidative stress and fibrosis in incipient myocardial dysfunction in type 2 diabetic patients (2005) International Journal of Cardiology, 101 (1), pp. 53-58. , DOI 10.1016/j.ijcard.2004.03.009; Aronson, D., Cross-linking of glycated collagen in the pathogenesis of arterial and myocardial stiffening of aging and diabetes (2003) Journal of Hypertension, 21 (1), pp. 3-12. , DOI 10.1097/00004872-200301000-00002; From, A.M., Scott, C.G., Chen, H.H., Changes in diastolic dysfunction in diabetes mellitus over time (2009) Am J Cardiol, 103, pp. 1463-1466. , 10.1016/j.amjcard.2009.01.358. 19427447; Tenenbaum, A., Motro, M., Fisman, E.Z., Leor, J., Boyko, V., Mandelzweig, L., Behar, S., Status of glucose metabolism in patients with heart failure secondary to coronary artery disease (2002) American Journal of Cardiology, 90 (5), pp. 529-532. , DOI 10.1016/S0002-9149(02)02529-8, PII S0002914902025298; Takeshita, F., Kodama, M., Yamamoto, H., Ikarashi, Y., Ueda, S., Teratani, T., Yamamoto, Y., Quinn, G., Streptozotocin-induced partial beta cell depletion in nude mice without hyperglycaemia induces pancreatic morphogenesis in transplanted embryonic stem cells (2006) Diabetologia, 49 (12), pp. 2948-2958. , DOI 10.1007/s00125-006-0432-z; Rizzo, G., Fiorucci, S., PPARs and other nuclear receptors in inflammation (2006) Curr Opin Pharmacol, 6 (4), pp. 421-427. , 10.1016/j.coph.2006.03.012. 16777482; Ikebukuro, K., Adachi, Y., Yamada, Y., Fujimoto, S., Seino, Y., Oyaizu, H., Hioki, K., Ikehara, S., Treatment of streptozotocin-induced diabetes mellitus by transplantation of islet cells plus bone marrow cells via portal vein in rats (2002) Transplantation, 73 (4), pp. 512-518; Yu, S., Reddy, J.K., Transcription coactivators for peroxisome proliferator-activated receptors (2007) Biochimica et Biophysica Acta - Molecular and Cell Biology of Lipids, 1771 (8), pp. 936-951. , DOI 10.1016/j.bbalip.2007.01.008, PII S138819810700011X; Bishop-Bailey, D., Peroxisome proliferator-activated receptors in the cardiovascular system (2000) Br J Pharmacol, 129, pp. 823-834. , 10.1038/sj.bjp.0703149. 10696077; Collin, M., Thiemermann, C., The PPAR-? ligand 15-deoxy?12,14 prostaglandin J2 reduces the liver injury in endotoxic shock (2003) European Journal of Pharmacology, 476 (3), pp. 257-258. , DOI 10.1016/S0014-2999(03)02179-4; Cuzzocrea, S., Pisano, B., Dugo, L., Ianaro, A., Patel, N.S., Paola, R.D., Genovese, T., Thiemermann, C., Rosiglitazone and 15-deoxy-{Delta}12,14-prostaglandin J2, ligands of the peroxisome proliferator-activat (2003) Br J Pharmacol, 140, pp. 366-376. , 10.1038/sj.bjp.0705419. 12970094; Gilde, A.J., Van Bilsen, M., Peroxisome proliferator-activated receptors (PPARS): Regulators of gene expression in heart and skeletal muscle (2003) Acta Physiologica Scandinavica, 178 (4), pp. 425-434. , DOI 10.1046/j.1365-201X.2003.01161.x; Khandoudi, N., Delerive, P., Berrebi-Bertrand, I., Buckingham, R.E., Staels, B., Bril, A., Rosiglitazone, a peroxisome proliferator-activated receptor-?, inhibits the Jun NH2-terminal kinase/activating protein 1 pathway and protects the heart from ischemia/reperfusion injury (2002) Diabetes, 51 (5), pp. 1507-1514; Sidell, R.J., Cole, M.A., Draper, N.J., Desrois, M., Buckingham, R.E., Clarke, K., Thiazolidinedione treatment normalizes insulin resistance and ischemic injury in the Zucker fatty rat heart (2002) Diabetes, 51 (4), pp. 1110-1117; Takano, H., Nagai, T., Asakawa, M., Toyozaki, T., Oka, T., Komuro, I., Saito, T., Masuda, Y., Peroxisome proliferator-activated receptor activators inhibit lipopolysaccharide-induced tumor necrosis factor- expression in neonatal rat myocytes (2000) Circ Res, 87, pp. 596-602. , 11009565; Yuan, Z., Liu, Y., Liu, Y., Zhang, J., Kishimoto, C., Wang, Y., Ma, A., Liu, Z., Peroxisome proliferation-activated receptor-? ligands ameliorate experimental autoimmune myocarditis (2003) Cardiovascular Research, 59 (3), pp. 685-694. , DOI 10.1016/S0008-6363(03)00457-7, PII S0008636303004577; Shiomi, T., Tsutsui, H., Hayashidani, S., Suematsu, N., Ikeuchi, M., Wen, J., Ishibashi, M., Takeshita, A., Pioglitazone, a peroxisome proliferator-activated receptor-? agonist, attenuates left ventricular remodeling and failure after experimental myocardial infarction (2002) Circulation, 106 (24), pp. 3126-3132. , DOI 10.1161/01.CIR.0000039346.31538.2C; Wayman, N.S., Hattori, Y., Mcdonald, M.C., Mota-Filipe, H., Cuzzocrea, S., Pisano, B., Chatterjee, P.K., Thiemermann, C., Ligands of the peroxisome proliferator-activated receptors (PPAR-? and PPAR-?) reduce myocardial infarct size (2002) FASEB Journal, 16 (9), pp. 1027-1040. , DOI 10.1096/fj.01-0793com; Yue, T.-L., Chen, J., Bao, W., Narayanan, P.K., Bril, A., Jiang, W., Lysko, P.G., Ohlstein, E.H., In vivo myocardial protection from ischemia/reperfusion injury by the peroxisome proliferator-activated receptor-? agonist rosiglitazone (2001) Circulation, 104 (21), pp. 2588-2594; Meigs, J.B., Invited commentary: Insulin resistance syndrome? Syndrome X? Multiple metabolic syndrome? A syndrome at all? Factor analysis reveals patterns in the fabric of correlated metabolic risk factors (2000) Am J Epidemiol, 152, pp. 908-12. , 10.1093/aje/152.10.908. 11092432; Sakkinen, P.A., Wahl, P., Cushman, M., Lewis, M.R., Tracy, R.P., Clustering of procoagulation, inflammation, and fibrinolysis variables with metabolic factors in insulin resistance syndrome (2000) Am J Epidemiol, 152, pp. 897-907. , 10.1093/aje/152.10.897. 11092431; Bonora, E., Kiechl, S., Willeit, J., Oberhollenzer, F., Egger, G., Bonadonna, R.C., Muggeo, M., Carotid atherosclerosis and coronary heart disease in the metabolic syndrome: Prospective data from the Bruneck Study (2003) Diabetes Care, 26 (4), pp. 1251-1257. , DOI 10.2337/diacare.26.4.1251; Reilly, M.P., Wolfe, M.L., Rhodes, T., Girman, C., Mehta, N., Rader, D.J., Measures of insulin resistance add incremental value to the clinical diagnosis of metabolic syndrome in association with coronary atherosclerosis (2004) Circulation, 110 (7), pp. 803-809. , DOI 10.1161/01.CIR.0000138740.84883.9C; Iwasaki, Y., Asai, M., Yoshida, M., Nigawara, T., Kambayashi, M., Oiso, Y., Nakashima, N., Nilvadipine inhibits nuclear factor-?B-dependent transcription in hepatic cells (2004) Clinica Chimica Acta, 350 (1-2), pp. 151-157. , DOI 10.1016/j.cccn.2004.07.012, PII S0009898104003730; Chen, Y.G., Xu, F., Zhang, Y., Ji, Q.S., Sun, Y., L�, R.J., Effect of aspirin plus clopidogrel on inflammatory markers in patients with non-ST-segment elevation acute coronary syndrome (2006) Chin Med J, 119, pp. 32-36. , 16454979; Sun, M., Dawood, F., Wen, W.-H., Chen, M., Dixon, I., Kirshenbaum, L.A., Liu, P.P., Excessive tumor necrosis factor activation after infarction contributes to susceptibility of myocardial rupture and left ventricular dysfunction (2004) Circulation, 110 (20), pp. 3221-3228. , DOI 10.1161/01.CIR.0000147233.10318.23; Valgimigli, M., Ceconi, C., Malagutti, P., Merli, E., Soukhomovskaia, O., Francolini, G., Cicchitelli, G., Ferrari, R., Tumor necrosis factor-? receptor 1 is a major predictor of mortality and new-onset heart failure in patients with acute myocardial infarction: The cytokine-activation and long-term prognosis in myocardial infarction (C-ALPHA) study (2005) Circulation, 111 (7), pp. 863-870. , DOI 10.1161/01.CIR.0000155614.35441.69; Wada, H., Saito, K., Kanda, T., Kobayashi, I., Fujii, H., Fujigaki, S., Tumor necrosis factor- plays a role in actual viral myocarditis in mice (2001) Circulation, 103, pp. 743-749. , 11156888; Li, W., Gan, R., Sun, G., Chronic treatment of enbrel in rats with isoproterenol-induced congestive heart failure limits left ventricular dysfunction and remodeling (2002) Chinese Medical Journal, 115 (8), pp. 1166-1169; Mann, D.L., McMurray, J.J.V., Packer, M., Swedberg, K., Borer, J.S., Colucci, W.S., Djian, J., Fleming, T., Targeted Anticytokine Therapy in Patients with Chronic Heart Failure: Results of the Randomized Etanercept Worldwide Evaluation (RENEWAL) (2004) Circulation, 109 (13), pp. 1594-1602. , DOI 10.1161/01.CIR.0000124490.27666.B2; McKarns, S.C., Schwartz, R.H., Distinct effects of TGF-?1 on CD4+ and CD8+ T cell survival, division, and IL-2 production: A role for T cell intrinsic Smad3 (2005) Journal of Immunology, 174 (4), pp. 2071-2083; Cheung, P.-Y., Sawicki, G., Wozniak, M., Wang, W., Radomski, M.W., Schulz, R., Matrix metalloproteinase-2 contributes to ischemia-reperfusion injury in the heart (2000) Circulation, 101 (15), pp. 1833-1839; Lalu, M.M., Pasini, E., Schulze, C.J., Ferrari-Vivaldi, M., Ferrari-Vivaldi, G., Bachetti, T., Schulz, R., Ischaemia-reperfusion injury activates matrix metalloproteinases in the human heart (2005) European Heart Journal, 26 (1), pp. 27-35. , DOI 10.1093/eurheartj/ehi007; Mujumdar, V.S., Smiley, L.M., Tyagi, S.C., Activation of matrix metalloproteinase dilates and decreases cardiac tensile strength (2001) International Journal of Cardiology, 79 (2-3), pp. 277-286. , DOI 10.1016/S0167-5273(01)00449-1, PII S0167527301004491; Jugdutt, B.I., Ventricular remodeling after infarction and the extracellular collagen matrix: When is enough enough? (2003) Circulation, 108 (11), pp. 1395-1403. , DOI 10.1161/01.CIR.0000085658.98621.49; Xing, S., Tan, H., Bi, X., Zhong, M., Zhang, Y., Zhang, W., Felodipine Reduces Cardiac Expression of IL-18 and Perivascular Fibrosis in Fructose-Fed Rats (2008) Mol Med, 14 (7-8), pp. 395-402. , 10.2119/2008-00024.Xing. 18504504; Zhang, M., Lv, X.Y., Li, J., Xu, Z.G., Chen, L., The characterization of high-fat diet and multiple low-dose streptozotocin induced type 2 diabetes rat model (2008) Exp Diabetes Res, p. 704045. , 19132099; Waynforth, H.B., Flecknell, P.A., (1998) Experimental and Surgical Technique in the Rat, pp. 66-113. , Academic Press London 2; Melin, J., Hellberg, O., Akyurek, L.M., Kallskog, O., Larsson, E., Fellstrom, B.C., Ischemia causes rapidly progressive nephropathy in the diabetic rat (1997) Kidney International, 52 (4), pp. 985-991; Johns, D.G., Ao, Z., Eybye, M., Olzinski, A., Costell, M., Gruver, S., Smith, S.A., Macphee, C.H., Rosiglitazone protects against ischemia/reperfusion-induced leukocyte adhesion in the Zucker diabetic fatty rat (2005) Journal of Pharmacology and Experimental Therapeutics, 315 (3), pp. 1020-1027. , http://jpet.aspetjournals.org/cgi/reprint/315/3/1020, DOI 10.1124/jpet.105.090993; Xing, S., Tan, H., Bi, X., Zhong, M., Zhang, Y., Zhang, W., Felodipine Reduces Cardiac Expression of IL-18 and Perivascular Fibrosis in Fructose-Fed Rats (2008) Mol Med, 14 (7-8), pp. 395-402. , 10.2119/2008-00024.Xing. 18504504; Basile, D.P., Martin, D.R., Hammerman, M.R., Extracellular matrix-related genes in kidney after ischemic injury: Potential role for TGF-? in repair (1998) Am J Physiol Renal Physiol, 275, pp. 6894-F903; Drury, R.A., Wallington, E.A., (1980) Histological Techniques, pp. 27-29. , Oxford University press. Oxford, N.Y., Toronto 5; Bancroft, J., (1982) Theory and Practice of Histological Techniques, pp. 131-135; Braham, D., Trinder, P., An improved colour reagent for the determination of blood glucose by the oxidase system (1972) Analyst, 97, pp. 142-145. , 10.1039/an9729700142. 5037807; Nagele, U., Hagele, E.O., Sauer, G., Reagent for the enzymatic determination of serum total triglycerides with improved lipolytic efficiency (1984) Journal of Clinical Chemistry and Clinical Biochemistry, 22 (2), pp. 165-174; Fascse, C.F., Enzymatic colorimetric method determination of total cholesterol in human serum (1982) Clin Chem, 28, pp. 901-907; Warnick, G.R., Benderson, J., Albers, J.J., Dextran sulfate-Mg2+ precipitation procedure for quantitation of high-density-lipoprotein cholesterol (1982) Clinical Chemistry, 28 (6), pp. 1379-1388; Friedewald, W.T., Levy, R.I., Fredrickson, D.S., Estimation of the concentration of low density lipoprotein cholesterol in plasma without use of preparative ultracentrifuge (1972) Clin Chem, 18 (6), pp. 499-502. , 4337382; Bonavida, B., Immunomodulatory effect of tumor necrosis factor (1991) Biotherapy, 3, pp. 127-33. , 10.1007/BF02172085. 2054253; Nathan, D.M., Davidson, M.B., DeFronzo, R.A., Heine, R.J., Henry, R.R., Pratley, R., Zinman, B., Kahn, R., Impaired fasting glucose and impaired glucose tolerance: Implications for care (2007) Diabetes Care, 30 (3), pp. 753-759. , http://care.diabetesjournals.org/cgi/reprint/30/3/753.pdf, DOI 10.2337/dc07-9920; Yanagawa, T., Taniguchi, A., Fukushima, M., Nakai, Y., Nagasaka, S., Ohgushi, M., Matsumoto, K., Seino, Y., Leptin, triglycerides, and interleukin 6 are independently associated with C-reactive protein in Japanese type 2 diabetic patients (2007) Diabetes Research and Clinical Practice, 75 (1), pp. 2-6. , DOI 10.1016/j.diabres.2006.04.019, PII S0168822706001732; Trichon, B., Roe, M., Diabetes mellitus and ischemic heart disease (2004) Diabetes and Cardiovascular Disease: Integrating Science and Clinical Medicine, pp. 241-250. , Marso PS, Stern MD Lippincott Williams and Wilkins; Cefalu, W.T., Insulin resistance: Cellular and clinical concepts (2001) Exp Biol Med, 226, pp. 13-26; Ares-Carrasco, S., Picatoste, B., Benito-Mart�n, A., Zubiri, I., Sanz, A.B., Snchez-N?o, M.D., Ortiz, A., Lorenzo, O., Myocardial fibrosis and apoptosis, but not inflammation, are present in long-term experimental diabetes (2009) Am J Physiol Heart Circ Physiol, 297, pp. 82109-H2119. , 10.1152/ajpheart.00157.2009. 19820199; Akbarzadeh, A., Norouzian, D., Mehrabi, M.R., Jamshidi, Sh., Farhangi, A., Allah Verdi, A., Mofidian, S.M.A., Lame Rad, B., Induction of diabetes by Streptozotocin in rats (2007) Indian Journal of Clinical Biochemistry, 22 (2), pp. 60-64. , http://medind.nic.in/iaf/t07/i2/iaft07i2p60.pdf, DOI 10.1007/BF02913315; El-Batran, S.A., Abdel-Salam, O.M.E., Nofal, S.M., Baiuomy, A.R., Effect of rosiglitazone and nateglinide on serum glucose and lipid profile alone or in combination with the biguanide metformin in diabetic rats (2006) Pharmacological Research, 53 (1), pp. 69-74. , DOI 10.1016/j.phrs.2005.08.008, PII S104366180500160X; Qian, Y., Li, S., Ye, S., Chen, Y., Zhai, Z., Chen, K., Yang, G., Renoprotective effect of rosiglitazone through the suppression of renal intercellular adhesion molecule-1 expression in streptozotocin-induced diabetic rats (2008) J Endocrinol Invest, 31, pp. 1069-1074. , 19246972; Abu-Abeeleh, M., Bani Ismail, Z., Alzaben, K.R., Abu-Halaweh, S.A., Al Essa, M.K., Abu-Abeeleh, J., Alsmady, M.M., Induction of diabetes mellitus in rats using intraperitoneal streptozotocin: A comparison between 2 strains of rats (2009) Eur J Nephrol, 24, pp. 46-53; Grossman, E., Messerli, F.H., Cardiovascular Diabetology: Clinical, Metabolic and Inflammatory Facets (2008) Adv Cardiol Basel, Karger, 45, pp. 82-106. , full-text; Wilson, P.W., D'Agostino, R.B., Sullivan, L., Parise, H., Kannel, W.B., Overweight and obesity as determinants of cardiovascular risk: The Framingham experience (2002) Arch Intern Med, 162, pp. 1867-1872. , 10.1001/archinte.162.16.1867. 12196085; Snow, V., Aronson, M.D., Hornbake, E.R., Mottur-Pilson, C., Weiss, K.B., Lipid Control in the Management of 2 Diabetes Mellitus: A Clinical Practice Guideline from the American College of Physicians (2004) Annals of Internal Medicine, 140 (8), pp. 644-649; Treatment of Hypertension in Adults with Diabetes (2003) Diabetes Care, 26 (SUPPL. 1), pp. 1980-s82. , American Diabetes Association 12502624; Aronson, D., Cross-linking of glycated collagen in the pathogenesis of arterial and myocardial stiffening of aging and diabetes (2003) Journal of Hypertension, 21 (1), pp. 3-12. , DOI 10.1097/00004872-200301000-00002; Asbun, J., Villarreal, F.J., The pathogenesis of myocardial fibrosis in the setting of diabetic cardiomyopathy (2006) Journal of the American College of Cardiology, 47 (4), pp. 693-700. , DOI 10.1016/j.jacc.2005.09.050, PII S0735109705027476; Shiomi, T., Tsutsui, H., Ikeuchi, M., Matsusaka, H., Hayashidani, S., Suematsu, N., Wen, J., Takeshita, A., Streptozotocin-induced hyperglycemia exacerbates left ventricular remodeling and failure after experimental myocardial infarction (2003) Journal of the American College of Cardiology, 42 (1), pp. 165-172. , DOI 10.1016/S0735-1097(03)00509-6; Backlund, T., Palojoki, E., Saraste, A., Eriksson, A., Finckenberg, P., Kyto, V., Lakkisto, P., Tikkanen, I., Sustained cardiomyocyte apoptosis and left ventricular remodelling after myocardial infarction in experimental diabetes (2004) Diabetologia, 47 (2), pp. 325-330. , DOI 10.1007/s00125-003-1311-5; Opara, E.C., Oxidative stress, micronutrients, diabetes mellitus and its complications (2002) Journal of The Royal Society for the Promotion of Health, 122 (1), pp. 28-34; Waller, D.G., Renwick, A.G., Hillier, K., Ischemic Heart Disease (2001) Medical Pharmacology and Therapeutics, 5, p. 81. , W.B.Saunders; Spain; Winer, N., Sowers, J.R., Epidemiology of Diabetes (2004) Journal of Clinical Pharmacology, 44 (4), pp. 397-405. , DOI 10.1177/0091270004263017; Waller, D.G., Renwick, A.G., Hillier, K., Ischemic Heart Disease (2001) Medical Pharmacology and Therapeutics, 5, p. 81. , WB Saunders; Spain; Opie, L.H., Clinician Update; Metabolic Syndrome (2007) Circulation, 115, pp. 532-e35. , 10.1161/CIRCULATIONAHA.106.671057. 17242286; Sampson, M., Davies, I., Gavrilovic, J., Sussams, B., Brown, J., Astley, S., Hughes, D.A., Plasma matrix metalloproteinases, low density lipoprotein oxidisability and soluble adhesion molecules after a glucose load in Type 2 diabetes (2004) Cardiovasc Diabetol, 3 (1), p. 7. , 10.1186/1475-2840-3-7. 15207013; Gao, X., Picchi, A., Zhang, C., Upregulation of TNF-alpha and Receptors Contribute to Endothelial Dysfunction in Zucker Diabetic Rats (2010) Am J Biomed Sci, 2 (1), pp. 1-12. , 10.5099/aj100100001. 20559450; Dinh, W., F�th, R., Nickl, W., Krahn, T., Ellinghaus, P., Scheffold, T., Bansemir, L., Lankisch, M., Elevated plasma levels of TNF-alpha and Interleukin-6 in patients with diastolic dysfunction and glucose metabolism disorders (2009) Cardiovascular Diabetology, 8, p. 58. , 10.1186/1475-2840-8-58. 19909503; Mizushige, K., Yao, L., Noma, T., Kiyomoto, H., Yu, Y., Hosomi, N., Ohmori, K., Matsuo, H., Alteration in left ventricular diastolic filling and accumulation of myocardial collagen at insulin-resistant prediabetic stage of a type II diabetic rat model (2000) Circulation, 101 (8), pp. 899-907; Shigeyama, J., Yasumura, Y., Sakamoto, A., Ishida, Y., Fukutomi, T., Itoh, M., Miyatake, K., Kitakaze, M., Increased gene expression of collagen Types I and III is inhibited by ?-receptor blockade in patients with dilated cardiomyopathy (2005) European Heart Journal, 26 (24), pp. 2698-2705. , DOI 10.1093/eurheartj/ehi492; Filippi, C.M., Juedes, A.E., Oldham, J.E., Ling, E., Togher, L., Peng, Y., Flavell, R.A., Von Herrath, M.G., Transforming Growth Factor- Suppresses the Activation of CD8+ T-Cells When Nave but Promotes Their Survival and Function Once Antigen Experienced (2008) Diabetes, 57 (10), pp. 2684-2692. , 10.2337/db08-0609. 18689691; Lijnen, P.J., Petrov, V.V., Fagard, R.H., Induction of cardiac fibrosis by transforming growth factor-beta (1) (2000) Mol Genet Metab, 71, pp. 418-435. , 10.1006/mgme.2000.3032. 11001836; Martinez, A., Oh, H.-R., Unsworth, E.J., Bregonzio, C., Saavedra, J.M., Stetler-Stevenson, W.G., Cuttitta, F., Matrix metalloproteinase-2 cleavage of adrenomedullin produces a vasoconstrictor out of a vasodilator (2004) Biochemical Journal, 383 (3), pp. 413-418. , DOI 10.1042/BJ20040920; Tsuruda, T., Costello-Boerrigter, L.C., Burnett Jr., J.C., Matrix metalloproteinases: Pathways of induction by bioactive molecules (2004) Heart Failure Reviews, 9 (1), pp. 53-61. , DOI 10.1023/B:HREV.0000011394.34355.bb; Lindsey, M.L., MMP induction and inhibition in myocardial infarction (2004) Heart Failure Reviews, 9 (1), pp. 7-19. , DOI 10.1023/B:HREV.0000011390.44039.b7; Wang, W., Schulze, C.J., Suarez-Pinzon, W.L., Dyck, J.R., Sawicki, G., Schulz, R., Intracellular action of matrix metalloproteinase-2 accounts for acute myocardial ischemia and reperfusion injury (2002) Circulation, 106, pp. 1543-9. , 10.1161/01.CIR.0000028818.33488.7B. 12234962
dcterms.source Scopus
dc.identifier.doi https://doi.org/10.1186/1758-5996-3-4
dc.identifier.doi PubMed ID :
dc.Affiliation October University for modern sciences and Arts (MSA)


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search MSAR


Advanced Search

Browse

My Account