Biofilm formation in enterococci: Genotype-phenotype correlations and inhibition by vancomycin

Show simple item record

dc.contributor.author Hashem Y.A.
dc.contributor.author Amin H.M.
dc.contributor.author Essam T.M.
dc.contributor.author Yassin A.S.
dc.contributor.author Aziz R.K.
dc.contributor.other Department of Microbiology and Immunology
dc.contributor.other Faculty of Pharmacy
dc.contributor.other British University in Egypt (BUE)
dc.contributor.other Shorouk City
dc.contributor.other Egypt; Department of Microbiology and Immunology
dc.contributor.other Faculty of Pharmacy
dc.contributor.other October University for Modern Sciences and Arts
dc.contributor.other 6 October City
dc.contributor.other Egypt; Department of Microbiology and Immunology
dc.contributor.other Faculty of Pharmacy
dc.contributor.other Cairo University
dc.contributor.other Cairo
dc.contributor.other Egypt
dc.date.accessioned 2020-01-09T20:41:11Z
dc.date.available 2020-01-09T20:41:11Z
dc.date.issued 2017
dc.identifier.issn 20452322
dc.identifier.other https://doi.org/10.1038/s41598-017-05901-0
dc.identifier.other PubMed ID 28720810
dc.identifier.uri https://t.ly/rxxxR
dc.description Scopus
dc.description MSA Google Scholar
dc.description.abstract Enterococci are nosocomial pathogens that can form biofilms, which contribute to their virulence and antibiotic resistance. Although many genes involved in biofilm formation have been defined, their distribution among enterococci has not been comprehensively studied on a genome scale, and their diagnostic ability to predict biofilm phenotypes is not fully established. Here, we assessed the biofilm-forming ability of 90 enterococcal clinical isolates. Major patterns of virulence gene distribution in enterococcal genomes were identified, and the differentiating virulence genes were screened by polymerase chain reaction (PCR) in 31 of the clinical isolates. We found that detection of gelE in Enterococcus faecalis is not sufficient to predict gelatinase activity unless fsrAB, or fsrB alone, is PCR-positive (P = 0.0026 and 0.0012, respectively). We also found that agg is significantly enriched in isolates with medium and strong biofilm formation ability (P = 0.0026). Additionally, vancomycin, applied at sub minimal inhibitory concentrations, inhibited biofilm in four out of five strong biofilm-forming isolates. In conclusion, we suggest using agg and fsrB genes, together with the previously established gelE, for better prediction of biofilm strength and gelatinase activity, respectively. Future studies should explore the mechanism of biofilm inhibition by vancomycin and its possible use for antivirulence therapy. � 2017 The Author(s). en_US
dc.description.uri https://www.scimagojr.com/journalsearch.php?q=21100200805&tip=sid&clean=0
dc.language.iso English en_US
dc.publisher Nature Publishing Group en_US
dc.relation.ispartofseries Scientific Reports
dc.relation.ispartofseries 7
dc.subject October University for Modern Sciences and Arts
dc.subject جامعة أكتوبر للعلوم الحديثة والآداب
dc.subject University of Modern Sciences and Arts
dc.subject MSA University
dc.subject antiinfective agent en_US
dc.subject vancomycin en_US
dc.subject virulence factor en_US
dc.subject bacterial gene en_US
dc.subject biofilm en_US
dc.subject drug effect en_US
dc.subject Egypt en_US
dc.subject Enterococcus en_US
dc.subject genetic association study en_US
dc.subject genetics en_US
dc.subject genotype en_US
dc.subject Gram positive infection en_US
dc.subject growth, development and aging en_US
dc.subject hospital en_US
dc.subject human en_US
dc.subject isolation and purification en_US
dc.subject microbiology en_US
dc.subject physiology en_US
dc.subject polymerase chain reaction en_US
dc.subject Anti-Bacterial Agents en_US
dc.subject Biofilms en_US
dc.subject Egypt en_US
dc.subject Enterococcus en_US
dc.subject Genes, Bacterial en_US
dc.subject Genetic Association Studies en_US
dc.subject Genotype en_US
dc.subject Gram-Positive Bacterial Infections en_US
dc.subject Hospitals en_US
dc.subject Humans en_US
dc.subject Polymerase Chain Reaction en_US
dc.subject Vancomycin en_US
dc.subject Virulence Factors en_US
dc.title Biofilm formation in enterococci: Genotype-phenotype correlations and inhibition by vancomycin en_US
dc.type Article en_US
dcterms.isReferencedBy Richards, M.J., Edwards, J.R., Culver, D.H., Gaynes, R.P., Nosocomial infections in combined medical-surgical intensive care units in the United States (2000) Infect. Control Hosp. Epidemiol., 21, pp. 510-515; Costerton, J.W., Cystic fibrosis pathogenesis and the role of biofilms in persistent infection (2001) Trends Microbiol., 9, pp. 50-52; Dautle, M.P., Wilkinson, T.R., Gauderer, M.W., Isolation and identification of biofilm microorganisms from silicone gastrostomy devices (2003) J. Pediatr. Surg., 38, pp. 216-220; Mohamed, J.A., Huang, W., Nallapareddy, S.R., Teng, F., Murray, B.E., Influence of origin of isolates, especially endocarditis isolates, and various genes on biofilm formation by Enterococcus faecalis (2004) Infect. Immun., 72, pp. 3658-3663; Lewis, K., Riddle of biofilm resistance (2001) Antimicrob. Agents Chemother., 45, pp. 999-1007; Pires-Bouccedil, P.D., Izumi, E., Furlaneto-Maia, L., Sturion, L., Suzart, S., Effects of environmental and nutritional factors on gelatinolytic activity by Enterococcus faecalis strains isolated from clinical sources (2010) Afri. J. Microbiol. Res., 4, pp. 969-976; Nallapareddy, S.R., Murray, B.E., Ligand-signaled upregulation of Enterococcus faecalis ace transcription, a mechanism for modulating host-E. Faecalis interaction (2006) Infect. Immun., 74, pp. 4982-4989; Mandlik, A., Swierczynski, A., Das, A., Ton-That, H., Pili in Gram-positive bacteria: Assembly, involvement in colonization and biofilm development (2008) Trends Microbiol., 16, pp. 33-40; Nallapareddy, S.R., Endocarditis and biofilm-Associated pili of Enterococcus faecalis (2006) J. Clin. Invest., 116, pp. 2799-2807; Miller, M.B., Bassler, B.L., Quorum sensing in bacteria (2001) Annu. Rev. Microbiol., 55, pp. 165-199; Hancock, L.E., Perego, M., The Enterococcus faecalis fsr two-component system controls biofilm development through production of gelatinase (2004) J. Bacteriol., 186, pp. 5629-5639; Nakayama, J., Gelatinase biosynthesis-Activating pheromone: A peptide lactone that mediates a quorum sensing in Enterococcus faecalis (2001) Mol. Microbiol., 41, pp. 145-154; Frank, K.L., Use of recombinase-based in vivo expression technology to characterize Enterococcus faecalis gene expression during infection identifies in vivo-expressed antisense RNAs and implicates the protease Eep in pathogenesis (2012) Infect. Immun., 80, pp. 539-549; Dunny, G.M., Berntsson, R.P., Enterococcal sex pheromones: Evolutionary pathways to complex, two-signal systems (2016) J. Bacteriol., 198, pp. 1556-1562; Alby, K., Bennett, R.J., Interspecies pheromone signaling promotes biofilm formation and same-sex mating in Candida albicans (2011) Proc. Natl Acad. Sci. USA, 108, pp. 2510-2515; Clewell, D.B., Francia, M.V., Flannagan, S.E., An, F.Y., Enterococcal plasmid transfer: Sex pheromones, transfer origins, relaxases, and the Staphylococcus aureus issue (2002) Plasmid, 48, pp. 193-201; Srinivasan, S., Harrington, G.W., Xagoraraki, I., Goel, R., Factors affecting bulk to total bacteria ratio in drinking water distribution systems (2008) Water Res, 42, pp. 3393-3404; Kadry, A.A., Tawfik, A., Abu El-Asrar, A.A., Shibl, A.M., Reduction of mucoid Staphylococcus epidermidis adherence to intraocular lenses by selected antimicrobial agents (1999) Chemotherapy, 45, pp. 56-60; Perez, M., IS256 abolishes gelatinase activity and biofilm formation in a mutant of the nosocomial pathogen Enterococcus faecalis V583 (2015) Can. J. Microbiol., 61, pp. 517-519; Aziz, R.K., SEED Servers: High-performance access to the SEED genomes, annotations, and metabolic models (2012) PLoS ONE, 7, p. e48053; Sindhanai, V., Avanthiga, S.S., Suresh Chander, V.C., Antibiotic susceptibility pattern of biofilm forming and biofilm non forming enterococci species (2016) IOSR J. Dent. Med. Sci, 15, pp. 33-37; Akhter, J., Ahmed, S., Saleh, A.A., Anwar, S., Antimicrobial resistance and in vitro biofilm-forming ability of Enterococci spp. Isolated from urinary tract infection in a tertiary care hospital in Dhaka (2014) Bangladesh Med. Res. Counc. Bull., 40, pp. 6-9; Hassan, A., Evaluation of different detection methods of biofilm formation in the clinical isolates (2011) Braz. J. Infect. Dis., 15, pp. 305-311; Mohamed, J.A., Huang, D.B., Biofilm formation by enterococci (2007) J. Med. Microbiol., 56, pp. 1581-1588; Kristich, C.J., Li, Y.H., Cvitkovitch, D.G., Dunny, G.M., Esp-independent biofilm formation by Enterococcus faecalis (2004) J. Bacteriol., 186, pp. 154-163; Baldassarri, L., Enterococcus spp. Produces slime and survives in rat peritoneal macrophages (2001) Med. Microbiol. Immunol., 190, pp. 113-120; Pillai, S.K., Effects of glucose on fsr-mediated biofilm formation in Enterococcus faecalis (2004) J. Infect. Dis., 190, pp. 967-970; Merritt, J.H., Kadouri, D.E., O'Toole, G.A., (2005) Growing and Analyzing Static Biofilms. Curr. Protoc. Microbiol, , Chapter 1, Unit 1B 1; Papadimitriou-Olivgeris, M., Biofilm synthesis and presence of virulence factors among enterococci isolated from patients and water samples (2015) J. Med. Microbiol., 64, pp. 1270-1276; Qin, X., Singh, K.V., Weinstock, G.M., Murray, B.E., Characterization of fsr, a regulator controlling expression of gelatinase and serine protease in Enterococcus faecalis OG1RF (2001) J. Bacteriol., 183, pp. 3372-3382; Roberts, J.C., Singh, K.V., Okhuysen, P.C., Murray, B.E., Molecular epidemiology of the fsr locus and of gelatinase production among different subsets of Enterococcus faecalis isolates (2004) J. Clin. Microbiol., 42, pp. 2317-2320; Mohamed, J.A., Murray, B.E., Lack of correlation of gelatinase production and biofilm formation in a large collection of Enterococcus faecalis isolates (2005) J. Clin. Microbiol., 43, pp. 5405-5407; Sedgley, C.M., Virulence, phenotype and genotype characteristics of endodontic Enterococcus spp (2005) Oral Microbiol. Immunol., 20, pp. 10-19; Nakayama, J., Kariyama, R., Kumon, H., Description of a 23.9-kilobase chromosomal deletion containing a region encoding fsr genes which mainly determines the gelatinase-negative phenotype of clinical isolates of Enterococcus faecalis in urine (2002) Appl. Environ. Microbiol., 68, pp. 3152-3155; Bourgogne, A., Large scale variation in Enterococcus faecalis illustrated by the genome analysis of strain OG1RF (2008) Genome Biol., 9, p. R110; Carniol, K., Gilmore, M.S., Signal transduction, quorum-sensing, and extracellular protease activity in Enterococcus faecalis biofilm formation (2004) J. Bacteriol., 186, pp. 8161-8163; Werner, G., Emergence and spread of vancomycin resistance among enterococci in Europe (2008) Euro Surveill, 13; Karmarkar, M.G., Gershom, E.S., Mehta, P.R., Enterococcal infections with special reference to phenotypic characterization & drug resistance (2004) Indian J. Med. Res., 119, pp. 22-25; Maestre, J.R., In vitro interference of tigecycline at subinhibitory concentrations on biofilm development by Enterococcus faecalis (2012) J. Antimicrob. Chemother., 67, pp. 1155-1158; Soumet, C., Ermel, G., Fach, P., Colin, P., Evaluation of different DNA extraction procedures for the detection of Salmonella from chicken products by polymerase chain reaction (1994) Lett. Appl. Microbiol., 19, pp. 294-298; Versalovic, J., Koeuth, T., Lupski, J.R., Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes (1991) Nucleic Acids Res., 19, pp. 6823-6831; Freeman, D.J., Falkiner, F.R., Keane, C.T., New method for detecting slime production by coagulase negative staphylococci (1989) J. Clin. Pathol., 42, pp. 872-874; Christensen, G.D., Adherence of coagulase-negative staphylococci to plastic tissue culture plates: A quantitative model for the adherence of staphylococci to medical devices (1985) J. Clin. Microbiol., 22, pp. 996-1006; Lopes Mde, F., Simoes, A.P., Tenreiro, R., Marques, J.J., Crespo, M.T., Activity and expression of a virulence factor, gelatinase, in dairy enterococci (2006) Int. J. Food Microbiol., 112, pp. 208-214; CLSI Performance Standards for Antimicrobial Susceptibility Testing; Twenty-first Informational Supplement M100-S21, , (Wayne, PA, 2011); Brede, D.A., Snipen, L.G., Ussery, D.W., Nederbragt, A.J., Nes, I.F., Complete genome sequence of the commensal Enterococcus faecalis 62, isolated from a healthy Norwegian infant (2011) J. Bacteriol., 193, pp. 2377-2378; Altschul, S.F., Gapped BLAST and PSI-BLAST: A new generation of protein database search programs (1997) Nucleic Acids Res, 25, pp. 3389-3402
dcterms.source Scopus
dc.identifier.doi https://doi.org/10.1038/s41598-017-05901-0
dc.identifier.doi PubMed ID 28720810
dc.Affiliation October University for modern sciences and Arts (MSA)


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search MSAR


Advanced Search

Browse

My Account