Screen printed ion selective electrodes as a fully integrated PAT tool: Application to the analysis and impurity profiling of diatrizoate sodium

Show simple item record

dc.contributor.author Fawaz E.M.
dc.contributor.author Abd El-Rahman M.K.
dc.contributor.author Riad S.M.
dc.contributor.author Shehata M.A.
dc.contributor.other Analytical Chemistry Department
dc.contributor.other Faculty of Pharmacy
dc.contributor.other Cairo University
dc.contributor.other Cairo
dc.contributor.other 11562
dc.contributor.other Egypt; Analytical Chemistry Department
dc.contributor.other Faculty of Pharmacy
dc.contributor.other October for Modern Sciences and Arts University
dc.contributor.other Cairo
dc.contributor.other Egypt
dc.date.accessioned 2020-01-09T20:41:04Z
dc.date.available 2020-01-09T20:41:04Z
dc.date.issued 2018
dc.identifier.issn 134651
dc.identifier.other https://doi.org/10.1149/2.1311807jes
dc.identifier.other PubMed ID :
dc.identifier.uri https://t.ly/kNxOA
dc.description Scopus
dc.description.abstract Conventional pharmaceutical manufacturing is generally accomplished via batch processing followed by laboratory testing conducted on some representative samples collected to evaluate batch quality. However, today significant opportunities exist for improving pharmaceutical quality assurance through innovation in process development and analysis. FDA's guidance for pharmaceutical industry has defined Process Analytical Technology (PAT) as a system for designing, analyzing, and controlling manufacturing through timely measurements,with the goal of ensuring final product quality.Nevertheless, pharmaceutical companies are encouraged to develop and implement innovative PAT tools for designing, analyzing, and controlling manufacturing through real-time strategies (i.e., during processing) of critical quality attributes of raw and final product. The goal of PAT is that quality cannot be tested into products; it should be built-in or should be by design. Furthermore, FDA stated that sensor-based measurements could pave the way to built-in product quality assurance which is the key to PAT development. From this perspective, this scientific approach presents screen-printed ISEs (SPEs) as a potential real-time analyzer and PAT-tool. Diatrizoate sodium (DTA) was chosen as a model analyte, it is a widely used X-ray contrast agent that is susceptible to degradation into a cytotoxic and mutagenic compound, that can be also used as its precursor. Two SPEs were fabricated and used successfully in the analysis of both DTA and its potential impurity. The proposed SPEs have the advantage of being real-time analyzers that could be fully integrated into the production cycle giving a key to a promising competent PAT-tool. � 2018 The Electrochemical Society. en_US
dc.description.uri https://www.scimagojr.com/journalsearch.php?q=25169&tip=sid&clean=0
dc.language.iso English en_US
dc.publisher Electrochemical Society Inc. en_US
dc.relation.ispartofseries Journal of the Electrochemical Society
dc.relation.ispartofseries 165
dc.subject Batch data processing en_US
dc.subject Chemical sensors en_US
dc.subject Ion selective electrodes en_US
dc.subject Photodegradation en_US
dc.subject Product design en_US
dc.subject Quality assurance en_US
dc.subject Sodium en_US
dc.subject Pharmaceutical company en_US
dc.subject Pharmaceutical industry en_US
dc.subject Pharmaceutical manufacturing en_US
dc.subject Pharmaceutical quality en_US
dc.subject Process analytical technology en_US
dc.subject Real time strategies en_US
dc.subject Representative sample en_US
dc.subject X-ray contrast agents en_US
dc.subject Quality control en_US
dc.title Screen printed ion selective electrodes as a fully integrated PAT tool: Application to the analysis and impurity profiling of diatrizoate sodium en_US
dc.type Article en_US
dcterms.isReferencedBy Kleinebudde, P., Khinast, J., Rantanen, J., Continuous Manufacturing of Pharmaceuticals; Blackshields, C.A., Crean, A.M., (2017) Pharm. Dev. Technol, 1; Gouveia, F.F., Rahbek, J.P., Mortensen, A.R., Pedersen, M.T., Felizardo, P.M., Bro, R., Mealy, M.J., (2017) Anal. Bioanal. Chem, 409 (3), p. 821; Fonteyne, M., Vercruysse, J., De Leersnyder, F., Van Snick, B., Vervaet, C., Remon, J.P., De Beer, T., (2015) TrAC Trends Anal Chem, 67, p. 159; Abd El-Rahman, M.K., Zaazaa, H.E., Eldin, N.B., Moustafa, A.A., (2016) ACS Sustain. Chem. Eng, 4 (6), p. 3122; Bakker, E., Buhlmann, P., Pretsch, E., (1997) Chem. Rev., 97 (8), p. 3083. , Washington D. C; Juenemann, D., Bohets, H., Ozdemir, M., De Maesschalck, R., Vanhoutte, K., Peeters, K., Nagels, L., Dressman, J.B., (2011) Eur. J. Pharm. Biopharm, 78 (1), p. 158; Yuan, D., Anthis, A.H.C., Ghahraman Afshar, M., Pankratova, N., Cuartero, M., Crespo, G.A., Bakker, E., (2015) Anal. Chem, 87 (17), p. 8640; El-Rahman, M.K.A., Al-Alamein, A.M.A., Abdel-Moety, E.M., Fawaz, E.M., (2017) J. Electrochem. Soc, 164 (14), p. H1013; Bohets, H., Vanhoutte, K., De Maesschalck, R., Cockaerts, P., Vissers, B., Nagels, L.J., (2007) Anal. Chim. Acta, 581 (1), p. 181; Rius-Ruiz, F.X., Crespo, A.G., Bejarano-Nosas, D., Blondeau, P., Riu, J., Rius, F.X., (2011) Anal. Chem, 83 (22), p. 8810; El-Rahman, M.K.A., Rezk, M.R., Mahmoud, A.M., Elghobashy, M.R., (2015) Sensors Actuators B Chem, 208, p. 14; Mohamed, H.M., (2016) TrAC-Trends Anal Chem, 82, p. 1; Li, M., Zhou, H., Shi, L., Li, D.-W., Long, Y.-T., (2014) Analyst, 139 (3), p. 643; Fawaz, E.M., El-Rahman, M.K.A., Riad, S.M., Shehata, M.A., (2017) Biomed. Chromatogr, 31 (2), p. e3799; Abd El-Rahman, M.K., Riad, S.M., Abdel Gawad, S.A., Fawaz, E.M., Shehata, M.A., (2015) Spectrochim. Acta Part A Mol. Biomol. Spectrosc, 136, p. 1167; Lindner, E., Umezawa, Y., (2008) Pure Appl Chem, 80 (1), p. 85; McKeating, K.S., Aub�, A., Masson, J.-F., (2016) Analyst, 141, p. 429; Abd El-Rahman, M.K., Salem, M.Y., (2015) Sensors Actuators, B Chem, 220, p. 255; Riad, S.M., Abd El-Rahman, M.K., Fawaz, E.M., Shehata, M.A., (2017) J. AOAC Int, 101 (3), p. 723; Santini, A., Oliveira, J., Pezza, H., Pezza, L., (2006) J. Brazilian Chem.; Hegde, R.N., Hosamani, R.R., Nandibewoor, S.T., (2009) Colloids Surfaces B Biointerfaces, 72 (2), p. 259; Tymecki, L., Glab, S., Koncki, R., (2006) Sensors, 6 (4), p. 390; Riad, S.M., El-Rahman, M.K.A., Fawaz, E.M., Shehata, M.A., (2015) Spectrochim. Acta-Part A Mol. Biomol. Spectrosc, 145, p. 254; Weiss, R., Hsu, B., Wheeler, L., Norman, A., Riley, R.F., (1981) Invest. Radiol, 16 (6), p. 517; El-Kosasy, A.M., Nebsen, M., Abd El-Rahman, M.K., Salem, M.Y., El-Bardicy, M.G., (2011) Talanta, 85 (2), p. 913; Umezawa, Y., B�hlmann, P., Umezawa, K., (2000) Pure Appl.; (2011) The United States Pharmacopeial Convention Inc, p. 2531. , Rockville MD
dcterms.source Scopus
dc.identifier.doi https://doi.org/10.1149/2.1311807jes
dc.identifier.doi PubMed ID :
dc.Affiliation October University for modern sciences and Arts (MSA)


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search MSAR


Advanced Search

Browse

My Account