Selenium nanomaterials in biomedicine An overview of new opportunities in nanomedicine of selenium

Show simple item record

dc.contributor.author Sakr T.M.
dc.contributor.author Korany M.
dc.contributor.author Katti K.V.
dc.contributor.other Radioactive Isotopes and Generator Department
dc.contributor.other Hot Labs Center
dc.contributor.other Atomic Energy Authority
dc.contributor.other P.O. Box 13759
dc.contributor.other Cairo
dc.contributor.other Egypt; Pharmaceutics Chemistry Department
dc.contributor.other Faculty of Pharmacy
dc.contributor.other October University of Modern Sciences and Arts (MSA)
dc.contributor.other Giza
dc.contributor.other Egypt; Labeled Compounds Department
dc.contributor.other Hot Labs Center
dc.contributor.other Atomic Energy Authority
dc.contributor.other P.O. Box 13759
dc.contributor.other Cairo
dc.contributor.other Egypt; Institute of Green Nanotechnology
dc.contributor.other Department of Radiology & Physics
dc.contributor.other University of Missouri
dc.contributor.other Columbia
dc.contributor.other MO 65212
dc.contributor.other United States; Missouri University Research Reactor
dc.contributor.other University of Missouri
dc.contributor.other Columbia
dc.contributor.other MO 65212
dc.contributor.other United States
dc.date.accessioned 2020-01-09T20:40:53Z
dc.date.available 2020-01-09T20:40:53Z
dc.date.issued 2018
dc.identifier.issn 17732247
dc.identifier.other https://doi.org/10.1016/j.jddst.2018.05.023
dc.identifier.other PubMed ID :
dc.identifier.uri https://t.ly/pyBRE
dc.description Scopus
dc.description.abstract Selenium is one of the most important dietary supplements in the human diet. It is incorporated into the synthesis of many antioxidant proteins, which serve as scavengers of reactive oxygen species such as glutathione peroxidase. Therefore, selenium has become antagonistic and resistant to many diseases resulting from oxidative stress such as arthritis, tumors, and heart and brain diseases. Selenium nanoparticles (SeNPs) have the potential to serve as new nutritional supplements with higher degradability, lower toxicity and ability to be cleared gradually from the body. Selenium nanoparticles have emerged as unusual selenium species with amazing prophylactic and therapeutic properties with dual synergistic effects of providing therapeutic cargo and improved anticancer activity. Recent investigations have also explored new applications of nano-scaled forms of selenium for a wide range of biological activities such as antibacterial and antifungal agents. Herein, we provide a focused account on the recent advances on various biomedical applications of selenium nanoparticles with a particular emphasis on their chemistry, nanotechnology and various applications in life sciences. � 2018 Elsevier B.V. en_US
dc.description.uri https://www.scimagojr.com/journalsearch.php?q=22204&tip=sid&clean=0
dc.language.iso English en_US
dc.publisher Editions de Sante en_US
dc.relation.ispartofseries Journal of Drug Delivery Science and Technology
dc.relation.ispartofseries 46
dc.subject Alzheimer en_US
dc.subject Arthritis en_US
dc.subject Cancer en_US
dc.subject Diabetic nephropathy en_US
dc.subject Drug delivery en_US
dc.subject Nanoparticle en_US
dc.subject Selenium en_US
dc.subject antibiotic agent en_US
dc.subject antioxidant en_US
dc.subject immunomodulating agent en_US
dc.subject selenium nanoparticle en_US
dc.subject trace element en_US
dc.subject antioxidant activity en_US
dc.subject chemical structure en_US
dc.subject chemoprophylaxis en_US
dc.subject dietary intake en_US
dc.subject nanomedicine en_US
dc.subject nanotechnology en_US
dc.subject oxidative stress en_US
dc.subject Review en_US
dc.subject synthesis en_US
dc.title Selenium nanomaterials in biomedicine An overview of new opportunities in nanomedicine of selenium en_US
dc.type Review en_US
dcterms.isReferencedBy Abdulah, R., Miyazaki, K., Nakazawa, M., Koyama, H., Chemical forms of selenium for cancer prevention (2005) J. Trace Elem. Med. Biol., 19 (2), pp. 141-150; Aly, H.A., El-Shenawy, A.I., Koura, F.A., Refat, M.S., Synthesis and characterization of some selenium nanometric compounds: spectroscopic, biological and antioxidant assessments (2014) World J. Nano Sci. Eng., 4, pp. 58-69; American Society for Testing and Materials, Astm-e 2456�06: Standard Terminology Related to Nanotechnology. West Conshohocken (2006), ASTM PA, USA; Arvizo, R., Bhattacharya, R., Mukherjee, P., Gold nanoparticles: opportunities and challenges in nanomedicine (2010) Expet Opin. Drug Deliv., 7 (6), pp. 753-763; Babior, B.M., Curnutte, J.T., Kipnes, R.S., Biological defense mechanisms: evidence for the participation of superoxide in bacterial killing by xanthine oxidase (1975) J. Lab. Clin. Med., 85 (2), pp. 235-244; Bai, Y., Wang, Y., Zhou, Y., Li, W., Zheng, W., Modification and modulation of saccharides on elemental selenium nanoparticles in liquid phase (2008) Mater. Lett., 62, pp. 2311-2314; Bhushan, L., Shah, C., Singh, K., Chaskar, A., Kumar, M., Bajaj, P.N., Ionic liquid-induced synthesis of selenium nanoparticles (2010) Mater. Res. Bull., 45, pp. 668-671; Bonda, D.J., Wang, X., Perry, G., Oxidative stress in Alzheimer disease, a possibility for prevention (2010) Neuropharmacology, 59, pp. 290-294; Bortolussi, R., Vandenbroucke-Grauls, C.M., van Asbeck, B.S., Verhoef, J., Relationship of bacterial growth phase to killing of Listeria monocytogenes by oxidative agents generated by neutrophils and enzyme systems (1987) Infect. Immun., 55 (12), pp. 3197-3203; Cannon, H.G., Geochemistry of Rocks and Related Soils and Vegetation in the Yellow Cat Area, Grand County, Utah. Washington, DC, United States Geological Survey (Bulletin No. 1176) (1964); Chanda, N., Shukla, R., An effective strategy for the synthesis of biocompatible gold nanoparticles using cinnamon phytochemicals for phantom CT imaging and photoacoustic detection of cancerous cells (2011) Pharmaceut. Res., 28 (2), pp. 279-291; Dwivedi, C., Shah, C.P., Singh, K., Kumar, M., Bajaj, P.N., An organic acid-induced synthesis and characterization of selenium nanoparticles, hindawi corporation (2011) Journal of Nanotechnology, , ID 651971; Chaudhary, S., Umar, A., Mehta, S.K., Surface functionalized selenium nanoparticles for biomedical applications (2014) J. Biomed. Nanotechnol., 10, pp. 3004-3042; Chen, T., Wong, Y.-S., Zheng, W., Bai, Y., Huang, L., Selenium nanoparticles fabricated in Undaria pinnatifida polysaccharide solutions induce mitochondria-mediated apoptosis in A375 human melanoma cells (2008) Colloids Surfaces B Biointerfaces, 67, p. 26; Chhabria, S., Krutika, D., Selenium nanoparticles and their applications (2016) Encyclopedia of Nanoscience and Nanotehnology, pp. 1-32. , American Scientific Publishers; Dagmar, H., Kristyna, C., Pavel, K., Vojtech, A., Rene, K., NANOCON, Oct 14th 16th 2015, Brno, Czech Republic, EU; Deng, Z., Cao, L., Tang, F., Zou, B., A new route to zinc-blende CdSe nanocrystals: mechanism and synthesis (2005) J. Phys. Chem. B, 109 (35), pp. 16671-16675; Dhanjal, S., Cameotra, S.S., Aerobic biogenesis of selenium nanospheres by Bacillus cereus isolated from coalmine soil (2010) Microb. Cell Factories, 9, p. 52; Dobias, J., Suvorova, E.I., Bernier-Latmani, R., Role of proteins in controlling selenium nanoparticle size (2011) Nanotechnology, 22, p. 195605; Dong, Y., Lee, S.O., Zhang, H., Marshall, J., Gao, A.C., Ip, C., Prostate specific antigen expression is down-regulated by selenium through disruption of androgen receptor signaling (2004) Canc. Res., 64, pp. 19-22; Durisic, N., Bachir, A.I., Detection and correction of blinking bias in image correlation transport measurements of quantum dot tagged macromolecules (2007) Biophys. J., 93 (4), pp. 1338-1346; Dutta, R.K., Nenavathu, B.P., Talukdar, S., Anomalous antibacterial activity and dye degradation by selenium doped ZnO nanoparticles (2014) Colloids Surfaces B Biointerfaces, 114, p. 218; El-Batal, A.I., Thabet, N.M., Osman, A., Abdel Ghaffar, A.B., Azab, K.S., Amelioration of oxidative damage induced in gamma irradiated rats by nano selenium and lovastatin mixture (2012) World Appl. Sci. J., 19 (7), pp. 962-971; El-Batal, A., Sidkey, N.M., Ismail, A.A., Arafa, R.A., Fathy, R.M., Impact of silver and selenium nanoparticles synthesized by gamma irradiation and their physiological response on early blight disease of potato (2016) J. Chem. Pharmaceut. Res., 8 (4), pp. 934-951; Etminan, M., FitzGerald, J.M., Gleave, M., Chambers, K., Intake of selenium in the prevention of prostate cancer: a systematic review and meta-analysis (2005) Cancer Causes Control, 16, pp. 1125-1131; FAO/WHO, Preparation and Use of Food-based Dietary Guidelines. Report of a Joint FAO/WHO Consultation (1998), World Health Organization Geneva (WHO Technical Report Series, No. 880); Feng, Y., Su, J., Zhao, Z., Zheng, W., Wu, H., Zhang, Y., Chen, T., Differential effects of amino acid surface decoration on the anticancer efficacy of selenium nanoparticles (2014) Dalton Trans., 43, pp. 1854-1861; Fernandes, A.P., Gandin, V., Selenium compounds as therapeutic agents in cancer (2015) Biochim. Biophys. Acta, 1850 (8), pp. 1642-1660; Fernndez-Llamosas, H., Castro, L., Blzquez, M.L., Daz, E., Carmona, M., Biosynthesis of selenium nanoparticles by Azoarcus sp. CIB (2016) Microb. Cell Factories, 15, p. 109; Fesharaki, P.J., Nazari, P., Shakibaie, M., Biosynthesis of selenium nanoparticles using Klebsiella Pneumoniae and their recovery by a simple sterilization process (2010) Braz. J. Microbiol., 41, pp. 461-466; Franke, K.W., Potter, V.R., A new toxicant occurring naturally in certain samples of plant foodstuffs (1934) J. Nutr., 8, pp. 615-624; Ganther, H.E., Selenium metabolism, selenoproteins and mechanisms of cancer prevention: complexities with thioredoxin reductase (1999) Carcinogenesis, 20 (9), pp. 1657-1666; Gromer, S., Eubel, J.K., Lee, B.L., Jacob, J., Human selenoproteins at a glance (2005) Cell. Mol. Life Sci., 62, pp. 2414-2437; Guo, M., Li, Y., Lin, Z., Surface decoration of selenium nanoparticles with curcumin induced HepG2 cell apoptosis through ROS mediated p53 and AKT signaling pathways (2017) RSC Adv., 7, pp. 52456-52464; Guo, L., Huang, K., Liu, H., Biocompatibility selenium nanoparticles with an intrinsic oxidase-like activity (2016) J. Nanoparticle Res., 18, p. 74; Halliwell, B., Aruoma, O.I., DNA damage by oxygen-derived species. Its mechanism and measurement in mammalian systems (1991) FEBS Lett., 281 (1-2), pp. 9-19; Hoepelman, I.M., Bezemer, W.A., Vandenbroucke-Grauls, C.M., Marx, J.J., Verhoef, J., Bacterial iron enhances oxygen radical-mediated killing of Staphylococcus aureus by phagocytes (1990) Infect. Immun., 58 (1), pp. 26-31; Huang, B., Zhang, J., Hou, J., Chen, C., Free radical scavenging efficiency of Nano-Se in vitro (2003) Free Radical Biol. Med., 35 (7), pp. 805-813; Huang, Y., He, L., Liu, W., Fan, C., Zheng, W., Wong, Y.S., Chen, T., Selective cellular uptake and induction of apoptosis of cancer-targeted selenium nanoparticles (2013) Biomaterials, 34, pp. 7106-7116; IPCS, (1987) Selenium. Geneva, World Health Organization, International Programme on Chemical Safety, , (Environmental Health Criteria, No. 58); Jalalian, S.M., Ramezani, M., Abnous, K., Taghdisi, S.M., Targeted co-delivery of epirubicin and NAS-24 aptamer to cancer cells using selenium nanoparticles for enhancing tumor response in vitro and in vivo (2018) Canc. Lett., 416, pp. 87-93; Katti, K.V., Renaissance of nuclear medicine through green nanotechnology: fictionalized radioactive gold nanoparticles in cancer therapy-my journey from chemistry to saving human lives (2016) J. Radioanal. Nucl. Chem., 309 (1), pp. 5-14; Kattumuri, V., Katti, K.V., Gum Arabic as a phytochemical construct for the stabilization of gold nanoparticles: in vivo pharmacokinetics and x-ray-contrast-imaging studies (2007) Small, 3 (2), pp. 333-341; Kharisov, B.I., Kharissova, O.V., Berdonosov, S.S., Radioactive nanoparticles and their main applications: recent advances (2014) Recent Pat. Nanotechnol., 8 (2), pp. 1-18; Kheradmand, E., Rafii, F., Yazdi, M.H., Sepahi, A.A., Shahverdi, A.R., Oveisi, M.R., The antimicrobial effects of selenium nanoparticle-enriched probiotics and their fermented broth against Candida albicans (2014) Daru, 22 (1), p. 48; Ko, E.R., Ilhan, A., Aytrk, Z., A comparison of hair and serum trace elements in patients with Alzheimer disease and healthy participants (2015) Turk. J. Med. Sci., 45, pp. 1034-1039; Kosik, K.S., Alzheimer's disease, a cell biological perspective (1992) Science, 256, pp. 780-783; Kramer, G.F., Ames, B.N., Mechanisms of mutagenicity and toxicity of sodium selenite (Na2SeO3) in Salmonella typhimurium (1988) Mutat. Res., 201 (1), pp. 169-180; Kumar, G.S., Kulkarni, A., Khurana, A., Kaur, J., Tikoo, K., Selenium nanoparticles involve HSP-70 and SIRT1 in preventing the progression of type 1 diabetic nephropathy (2014) Chem. Biol. Interact., 223, p. 125; Kyzas, G.Z., Matis, K.A., Nanoadsorbents for pollutants removal: a review (2015) J. Mol. Liq., 203, pp. 159-168; Lee, S.F., Osborne, M.A., Brightening, blinking, bluing and bleaching in the life of a quantum dot: friend or foe? (2009) ChemPhysChem, 10 (13), pp. 2174-2191; Li, H., Zhang, J., Wang, T., Luo, W., Zhou, Q., Jiang, G., Elemental selenium particles at nano-size (Nano-Se) are more toxic to Medaka (Oryzias latipes) as a consequence of hyper-accumulation of selenium: a comparison with sodium selenite (2008) Aquat. Toxicol., 89, pp. 251-256; Liang, T., Jia, X., Jiang, X., Zhang, Y., Tang, H., Yao, S., Xie, Q., In vitro study on the individual and synergistic cytotoxicity of adriamycin and selenium nanoparticles against Bel7402 cells with a quartz crystal microbalance (2009) Biosens. Bioelectron., 24, pp. 2268-2272; Lin, Y., Choksi, S., Shen, H.M., Yang, Q.F., Hur, G.M., Kim, Y.S., Tran, J.H., Liu, Z.G., Tumor necrosis factor-induced nonapoptotic cell death requires receptor-interacting protein-mediated cellular reactive oxygen species accumulation (2004) J. Biol. Chem., 279, pp. 10822-10828; Lin, Z.H., Wang, C.R.C., Evidence on the size-dependent absorption spectral evolution of selenium nanoparticles (2005) Mater. Chem. Phys., 92, pp. 591-594; Lindberg, P., Selenium determination in plant and animal material, and in water. A methodological study (1968) Acta Vet. Scand., pp. 1-48; Liu, T., Zeng, L., Jiang, W., Fu, Y., Zheng, W., Chen, T., Rational design of cancer-targeted selenium nanoparticles to antagonize multidrug resistance in cancer cells (2015) Nanomed. Nanotechnol. Biol. Med., p. 11; Liu, W., Li, X., Wong, Y., Zheng, W., Zhang, Y., Cao, W., Chen, T., Selenium nanoparticles as a Carrier of 5-fluorouracil to achieve anticancer synergism (2012) ACS Nano, 6 (8), pp. 6578-6591; Liu, Y., Zeng, S., Liu, Y., Synthesis and antidiabetic activity of selenium nanoparticles in the presence of polysaccharides from Catathelasma ventricosum (2018) Int. J. Biol. Macromol., 27. , S01418130(18)30824-9; Lu, A.H., Salabas, E.L., Schth, F., Magnetic nanoparticles: synthesis, protection, functionalization, and application (2007) Angew Chem. Int. Ed. Engl., 46 (8), pp. 1222-1244; Luo, H., Wang, F., Bai, Y., Chen, T., Zheng, W., Selenium nanoparticles inhibit the growth of HeLa and MDA-MB-231 cells through induction of S phase arrest (2012) Colloids Surfaces B Biointerfaces, 94, pp. 304-308; Maeda, H., Toward a full understanding of the EPR effect in primary and metastatic tumors as well as issues related to its heterogeneity (2015) Adv. Drug Deliv. Rev., 91, pp. 3-6; Maiyo, F., Singh, M., Selenium nanoparticles: potential in cancer gene and drug delivery (2017) Nanomedicine, 12 (9), pp. 1075-1089; Malhotra, S., Welling, M.N., Mantri, S.B., Desai, K., In vitro and in vivo antioxidant, cytotoxic, and antichronic inflammatory arthritic effect of selenium nanoparticles (2016) J. Biomed. Mater. Res. Part B, 104B, pp. 993-1003; McComb, S., Cessford, E., Alturki, N.A., Joseph, J., Shutinoski, B., Startek, J.B., Gamero, A.M., Sad, S., Type-I interferon signaling through ISGF3 complex is required for sustained Rip3 activation and necroptosis in macrophages (2014) Proc. Natl. Acad. Sci. U.S.A., 111, pp. E3206-E3213; Minaev, V.S., Timoshenkov, S.P., Kalugin, V.V., Structural and phase transformations in condensed selenium (2005) J. Optoelectron. Adv. Mater., 7, p. 1717; Moxon, A.L., Alkali disease, or selenium poisoning (1937) So. Dak. Agric. Exp. Sta. Tech. Bull., 311, pp. 1-91; Mulens, V., Morales, M.D.P., Barber, D.F., Development of magnetic nanoparticles for cancer gene therapy: a comprehensive review (2013) ISRN Nanomater, 2013, p. 646284; NAS, Dietary Reference Intakes for Vitamin C, Vitamin E, Selenium, and Carotenoids. A Report of the Panel on Dietary Antioxidants and Related Compounds, Subcommittees on Upper Reference Levels of Nutrients and Interpretation and Uses of Dietary Reference Intakes, and the Standing Committee on the Scientific Evaluation of Dietary Reference Intakes (2000), National Academy of Sciences, Institute of Medicine, Food and Nutrition Board Washington, DC; Naz?ro?lu, M., Muhamad, S., Pecze, L., Nanoparticles as potential clinical therapeutic agents in Alzheimer's disease: focus on selenium nanoparticles (2017) Expet Rev. Clin. Pharmacol., , https://doi.org/10.1080/17512433.2017.1324781; Neve, J., Selenium as a �nutraceutical�: how to conciliate physiological and supranutritional effects for an essential trace element (2002) Curr. Opin. Clin. Nutr. Metab. Care, 5 (6), pp. 659-663; Nie, T.Q., Wu, H.L., Wong, K.H., Chen, T.F., Facile synthesis of highly uniform selenium nanoparticles using glucose as the reductant and surface decorator to induce cancer cell apoptosis (2016) J. Mater. Chem. B, 4, pp. 2351-2358; Nune, S.K., Chanda, N., Green nanotechnology from tea: phytochemicals in tea as building blocks for production of biocompatible gold nanoparticles (2009) J. Mater. Chem., 19 (19), pp. 2912-2920; Oldfield, J., A brief history of selenium research: from alkali disease to prostate cancer (from poison to prevention) (2002) Am. Soc. Anim. Sci., pp. 1-4. , https://www.asas.org/docs/publications/oldfieldhist.pdf?sfvrsn=0, Online Supplement; Oremland, R.S., Herbel, M.J., Blum, J.S., Structural and spectral features of selenium nanospheres produced by Se-Respiring bacteria (2004) Appl. Environ. Microbiol., 70 (1), pp. 52-60; Oster, O., Prellwitz, W., The renal excretion of selenium (1990) Biol. Trace Elem. Res., 24 (2), pp. 119-146; Patai, S., (1987) The Chemistry of Organic Selenium and Tellurium Compounds, The Chemistry of Triple Bonded Functional Groups., 2. , The Bath Press Avon, Great Britain John Wiley & Sons Ltd; Peterson, J.J., Nesbitt, D.J., Modified power law behavior in quantum dot blinking: a novel role for biexcitons and auger ionization (2009) Nano Lett., 9 (1), pp. 338-345; Phong, A.T., Neil, O.B.-S., Eric, C.R., Namfon, P., Biswas, D.P., O'Connor, A.J., Low cytotoxic trace element selenium nanoparticles and their differential antimicrobial properties against S. aureus and E. coli (2016) Nanotechnology, 27, p. 045101; Pi, J., Jin, H., Liu, R., Pathway of cytotoxicity induced by folic acid modified selenium nanoparticles in MCF-7 cells (2013) Appl. Microbiol. Biotechnol., 97, p. 1051; Porter, N.A., Caldwell, S.E., Mills, K.A., Mechanisms of free radical oxidation of unsaturated lipids (1995) Lipids, 30 (4), pp. 277-290; Prasad, K.S., Selvaraj, K., Biogenic synthesis of selenium nanoparticles and their effect on as(III)-induced toxicity on human Lymphocytes (2014) Biol. Trace Elem. Res., 275, p. 157. , https://doi.org/10.1007/s12011-014-9891-0; Rahman, T., Hosen, I., Islam, M., Shekhar, H., Oxidative stress and human health (2012) Adv. Biosci. Biotechnol., 3, pp. 997-1019; Ramamurthy, C.H., Sampath, K.S., Arunkumar, P., Suresh Kumar, M., Sujatha, V., Premkumar, K., Thirunavukkarasu, C., Green synthesis and characterization of selenium nanoparticles and its augmented cytotoxicity with doxorubicin on cancer cells (2013) Bioproc. Biosyst. Eng., 36, pp. 1131-1139; Ramos, J.F., Webster, T.J., Cytotoxicity of selenium nanoparticles in rat dermal fibroblasts (2012) Int. J. Nanomed., 7, pp. 3907-3914; Rayman, M.P., The importance of selenium to human health (2000) Lancet, 356, p. 233; Refat, M.S., El-Sabawy, K.M., Infrared spectra, Raman laser, XRD, DSC/TGA and SEM investigations on the preparations of selenium metal, (Sb2O3, Ga2O3, SnO and HgO) oxides and lead carbonate with pure grade using acetamide precursors (2011) Bull. Mater. Sci., 34, pp. 873-881; Ren, Y., Zhao, T., Mao, G., Zhang, M., Li, F., Zou, Y., Yang, L., Wu, X., Antitumor activity of hyaluronic acid selenium nanoparticles in Heps tumor mice models (2013) Int. J. Biol. Macromol., 57, p. 57; Rodrguez-Fragoso, P., Reyes-Esparza, J., Len-Buitimea, A., Rodrguez-Fragoso, L., Synthesis, characterization and toxicological evaluation of maltodextrin capped cadmium sulfide nanoparticles in human cell lines and chicken embryos (2012) J. Nanobiotechnol., 10 (47), pp. 1-11; Rosen, H., Klebanoff, S.J., Role of iron and ethylene di amine tetra acetic acid in the bactericidal activity of a superoxide aniongenerating system (1981) Arch. Biochem. Biophys., 208 (2), pp. 512-519; Sakr, T.M., Nawar, M.F., Fasih, T.W., El-Bayoumy, S., Abd El-Rehim, H.A., Nano-technology contributions towards the development of high performance radioisotope generators: the future promise to meet the continuing clinical demand (2017) Appl. Radiat. Isot., 129, pp. 67-75; Sasidharan, S., Balakrishnaraja, R., Comparison studies on the synthesis of selenium nanoparticles by various micro-organisms (2014) Int. J. Pure App. Biosci., 2 (1), pp. 112-117; Schmid, G., Nanoparticles: from Theory to Application (2010), second ed. Wiley-VCH Weinheim; Schwarz, K., Foltz, C.M., Selenium as an integral part of factor 3 against dietary necrotic liver degeneration (1957) J. Am. Chem. Soc., 79, pp. 3292-3293; Scott, R.C., Voegeli, P.T., Jr., Radiochemical Analysis of Ground and Surface Water in Colorado (1961), Colorado Water Conservation Board (Basic Data Report 7); Segal, B.H., Li, D., Holland, S.M., Phagocyte NADPH oxidase, but not inducible nitric oxide synthase, is essential for early control of Burkholderia cepacia and Chromobacterium violaceum infection in mice (2003) Infect. Immun., 71 (1), pp. 205-210; Segal, B.H., Sakamoto, N., Patel, M., Maemura, K., Klein, A.S., Holland, S.M., Bulkley, G.B., Xanthine oxidase contributes to host defense against Burkholderia cepacia in the p47 mouse model of chronic granulomatous disease (2000) Infect. Immun., 68 (4), pp. 2374-2378; Shakibaie, M., Salari Mohazab, N., Ayatollahi Mousavi, S.A., Antifungal activity of selenium nanoparticles synthesized by Bacillus species Msh-1 against Aspergillus fumigatus and Candida albicans (2015) Jundishapur J. Microbiol., 8 (9); Sharma, G., Sharma, A.R., Bhavesh, R., Park, J., Ganbold, B., Nam, J.-S., Lee, S.-S., Biomolecule-mediated synthesis of selenium nanoparticles using dried Vitis vinifera (raisin) extract (2014) Molecules, 19, pp. 2761-2770; Sheng-Yi, Z., Zhang, J., Wang, H.-Y., Chen, H.-Y., Synthesis of selenium nanoparticles in the presence of polysaccharides (2004) Mater. Lett., 58, pp. 2590-2594; Shinohara, N., Oshima, Y., Kobayashi, T., Pulmonary clearance kinetics and extra-pulmonary translocation of seven TiO2 nano- and submicron materials following intratracheal administration in rats (2015) Nanotoxicology, 9 (8), pp. 1050-1058; Shukla, R., Chanda, N., Green nanotechnology-a sustainable approach in the nanorevolution (2012) Journal Sustainable Preparation of Metal Nanoparticles: Methods and Applications, 19, p. 144; Shukla, R., Nune, S.K., Soybeans as a phytochemical reservoir for the production and stabilization of biocompatible gold nanoparticles (2008) Small, 4 (9), pp. 1425-1436; Sies, H., Biochemistry of oxidative stress (1986) Ange- wandte Chemie International Edition in English, 25, pp. 1058-1071; Sies, H., Cadenas, E., Oxidative stress: dam- age to intact cells and organs (1985) Phil. Trans. Roy. Soc. Lond.: Biol. Sci., 311, pp. 617-631; Smith, M.J., Westfall, B.B., Further field studies on the selenium problem in relation to public health (1937) United States Public Health Report, 52, pp. 1375-1384; Sonkusre, P., Cameotra, S.S., Biogenic selenium nanoparticles induce ROS-mediated necroptosis in PC-3 cancer cells through TNF activation (2017) J. Nanobiotechnol., 15, p. 43; Sonkusre, P., Nanduri, R., Gupta, P., Cameotra, S.S., Improved extraction of intracellular biogenic selenium nanoparticles and their specificity for cancer chemoprevention (2014) J. Nanomed. Nanotechnol., 5, pp. 194-202; Soumya, R.S., Ghosh, S.K., Abraham, E.T., Preparation and characterization of guar gum nanoparticles (2010) Int. J. Biol. Macromol., 46, pp. 267-269; Spallholz, J.E., On the nature of selenium toxicity and carcinostatic activity (1994) Free Radical Biol. Med., 17 (1), pp. 45-64; Stadtman, E.R., Levine, R.L., Protein oxidation (2000) Ann. N. Y. Acad. Sci., 899, pp. 191-208; Sudip, N., Kumar Ghosh, S., Panigahi, S., Thundat, T., Pal, T., Synthesis of selenium nanoparticle and its photocatalytic application for decolorization of methylene blue under UV irradiation (2004) Langmuir, 20 (18), pp. 7880-7883; Tan, L., Jia, X., Jiang, X., Zhang, Y., Tang, H., Yao, S., Xie, Q., In vitro study on the individual and synergistic cytotoxicity of adriamycin and selenium nanoparticles against Bel7402 cells with a quartz crystal microbalance (2009) Biosens. Bioelectron., 24, pp. 2268-2272; Tan, L.C., Nancharaiah, Y.V., Van Hullebusch, E.D., Lens, P.N., Selenium: environmental significance, pollution, and biological treatment technologies (2016) Biotechnol. Adv., 34 (5), pp. 886-907; Tapiero, H., Townsend, D., Tew, K., The antioxidant role of selenium and seleno-compounds (2003) Biomed. Pharmacother., 57 (3), pp. 134-144; Tianqi, N., Wu, H., Wong, K.-H., Tianfeng, Facile synthesis of highly uniform selenium nanoparticles using glucose as the reductant and surface decorator to induce cancer cell apoptosis, Chen (2016) J. Mater. Chem. B, 4, pp. 2351-2358; Tinggi, U., Selenium: its role as antioxidant in human health (2008) Environ. Health Prev. Med., 13, pp. 102-108; Tran, P.A., Webster, T.J., Selenium nanoparticles inhibit Staphylococcus aureus growth (2011) Int. J. Nanomed., 6, pp. 1553-1558; Tran, P.A., Sarin, L., Hurt, R.H., Webster, T.J., Differential effects of nanoselenium doping on healthy and cancerous osteoblasts in coculture on titanium (2010) Int. J. Nanomed., 5, pp. 351-358; UK EGVM, Revised Review of Selenium (2002), United Kingdom Expert Group on Vitamins and Minerals (EVM/99/17.REVISEDAUG2002); Vedagiri, A., Thangarajan, S., Mitigating effect of chrysin loaded solid lipid nanoparticles against amyloid ?25-35 induced oxidative stress in rat hippocampal region, an efficient formulation approach for Alzheimer's disease (2016) Neuropeptides, 58, pp. 111-125; Vekariya, K.K., Kaur, J., Tikoo, K., ER? signaling imparts chemotherapeutic selectivity to selenium nanoparticles in breast cancer (2012) Nanomed. Nanotechnol. Biol. Med., 8, p. 1125; Vural, H., Demirin, H., Kara, Y., Alterations of plasma magnesium, copper, zinc, iron and selenium concentrations and some related erythrocyte antioxidant enzyme activities in patients with Alzheimer's disease (2010) J. Trace Elem. Med. Biol., 24 (3), pp. 169-173; Wang, H., Zhang, J., Yu, H., Elemental selenium at nano size possesses lower toxicity without compromising the fundamental effect on selenoenzymes: comparison with selenomethionine in mice (2007) Free Radic. Biol. Med., 42, p. 1524; Wang, X., Sun, K., Tan, Y., Wu, S., Zhang, J., Efficacy and safety of selenium nanoparticles administered intraperitoneally for the prevention of growth of cancer cells in the peritoneal cavity (2014) Free Radic. Biol. Med., 72, pp. 1-10; Weekley, C.M., Harris, H.H., Which form is that? The importance of selenium speciation and metabolism in the prevention and treatment of disease (2013) Chem. Soc. Rev., 42 (23), pp. 8870-8894; Wu, S., Sun, K., Wang, X., Wang, D., Wan, X., Zhang, J., Protonation of epigallocatechin-3-gallate (EGCG) results in massive aggregation and reduced oral bioavailability of EGCG-dispersed selenium nanoparticles (2013) J. Agric. Food Chem., 61 (30), pp. 7268-7275; Xia, Y., Synthesis of selenium nanoparticles in the presence of silk fibroin (2007) Mater. Lett., 61, pp. 4321-4324; Xia, Y., You, P., Xu, F., Liu, J., Xing, F., Novel functionalized selenium nanoparticles for enhanced anti-hepatocarcinoma activity in vitro (2015) Nanoscale Research Letters, 10, p. 349; Xiang, N., Zhao, R., Zhong, W., Sodium selenite induces apoptosis by generation of superoxide via the mitochondrial-dependent pathway in human prostate cancer cells (2009) Canc. Chemother. Pharmacol., 63, pp. 351-362; Yang, F., Tang, Q., Zhong, X., Surface decoration by Spirulina polysaccharide enhances the cellular uptake and anticancer efficacy of selenium nanoparticles (2012) Int. J. Nanomed., 7, pp. 835-844; Yang, L., Chen, Q., Liu, Y., Zhang, J., Sun, D., Zhou, Y., Liu, J., Se/Ru nanoparticles as inhibitors of metal-induced Aaggregation in Alzheimer's disease (2014) J. Mater. Chem. B, 2, p. 1977; Yang, L., Sun, J., Xie, W., Liu, Y., Liu, J., Dual-functional selenium nanoparticles bind to and inhibit amyloid ? fiber formation in Alzheimer's disease (2017) J. Mater. Chem. B, 5, pp. 5954-5967; Yazdi, M.H., Mahdavi, M., Faghfuri, E., Faramarzi, M.A., Th1 immune response induction by biogenic selenium nanoparticles in mice with breast cancer: preliminary vaccine model (2015) Iran. J. Biotechnol., 13 (2), p. 1; Yazdi, M.H., Mahdavi, M., Setayesh, N., Esfandyar, M., Shahverdi, A.R., Selenium nanoparticle-enriched Lactobacillus brevis causes more efficient immune responses in vivo and reduces the liver metastasis in metastatic form of mouse breast cancer (2013) Daru, 21 (1), p. 33; Yazdi, M.H., Mahdavi, M., Varastehmoradi, B., Faramarzi, M.A., Shahverdi, A.R., The immunostimulatory effect of biogenic selenium nanoparticles on the 4T1 breast cancer model: an in Vivo Study (2012) Biol. Trace Elem. Res., 149, p. 22; Yu, M.K., Park, J., Jon, S., Targeting strategies for multifunctional nanoparticles in cancer imaging and therapy (2012) Theranostics, 2 (1), p. 3; Yu, B., pH-responsive cancer-targeted selenium nanoparticles: a transformable drug Carrier with enhanced theranostic effects (2014) J. Mater. Chem. B, 2 (33), pp. 5409-5418; Yu, Q., Liu, Y., Cao, C., The use of pH-sensitive functional selenium nanoparticles shows enhanced in vivo VEGF siRNA silencing and fluorescence imaging (2014) Nanoscale, 6 (15), pp. 9279-9292; Zamaraeva, M.V., Sabirov, R.Z., Maeno, E., Ando-Akatsuka, Y., Bessonova, S.V., Okada, Y., Cells die with increased cytosolic ATP during apoptosis: a bioluminescence study with intracellular luciferase (2005) Cell Death Differ., 12, pp. 1390-1397; Zhang, J.S., Gao, X.Y., Zhang, L.D., Bao, Y.P., Biological effects of a nano red elemental selenium (2001) Biofactors, 15, p. 27; Zhang, J., Taylor, E.W., Wan, X., Peng, D., Impact of heat treatment on size, structure, and bioactivity of elemental selenium nanoparticles (2012) Int. J. Nanomed., 7, pp. 815-825; Zhang, J., Teng, Z., Yuan, Y., Development, physicochemical characterization and cytotoxicity of selenium nanoparticles stabilized by beta-lactoglobulin (2018) Int. J. Biol. Macromol., 107, pp. 1406-1413; Zheng, S., Li, X., Zhang, Y., Xie, Q., Wong, Y.S., Zheng, W., Chen, T., PEG-nanolized ultrasmall selenium nanoparticles overcome drug resistance in hepatocellular carcinoma HepG2 cells through induction of mitochondria dysfunction (2012) Int. J. Nanomed., 7, pp. 3939-3949
dcterms.source Scopus
dc.identifier.doi https://doi.org/10.1016/j.jddst.2018.05.023
dc.identifier.doi PubMed ID :
dc.Affiliation October University for modern sciences and Arts (MSA)


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search MSAR


Advanced Search

Browse

My Account