Hepatoprotective activity of Erythrina neillii leaf extract and characterization of its phytoconstituents

Show simple item record

dc.contributor.author Bakr R.O.
dc.contributor.author Fayed M.A.A.
dc.contributor.author Fayez A.M.
dc.contributor.author Gabr S.K.
dc.contributor.author El-Fishawy A.M.
dc.contributor.author Taha S.El-Alfy
dc.contributor.other Department of Pharmacognosy
dc.contributor.other Faculty of Pharmacy
dc.contributor.other October University for Modern Sciences and Arts
dc.contributor.other Giza
dc.contributor.other 11787
dc.contributor.other Egypt; Department of Pharmacognosy
dc.contributor.other Faculty of Pharmacy
dc.contributor.other El-Sadat City University
dc.contributor.other Egypt; Department of Pharmacology
dc.contributor.other Faculty of Pharmacy
dc.contributor.other October University for Modern Sciences and Arts
dc.contributor.other Giza
dc.contributor.other 11787
dc.contributor.other Egypt; Department of Pharmacognosy
dc.contributor.other Faculty of Pharmacy
dc.contributor.other Cairo University
dc.contributor.other Cairo
dc.contributor.other 11562
dc.contributor.other Egypt
dc.date.accessioned 2020-01-09T20:40:41Z
dc.date.available 2020-01-09T20:40:41Z
dc.date.issued 2019
dc.identifier.issn 9447113
dc.identifier.other https://doi.org/10.1016/j.phymed.2018.09.231
dc.identifier.other PubMed ID 30668417
dc.identifier.uri https://t.ly/2d3l5
dc.description Scopus
dc.description.abstract Background: Natural antioxidants and anti-inflammatory agents have the ability to restore normal balance to destructed liver cells. The genus Erythrina has attracted attention for its broad spectrum of physiological activities and its rich polyphenolic and alkaloid contents. Hypothesis/Purpose: The major phytoconstituents of Erythrina neillii, an ornamental coral tree and a hybrid between E. herbacea and E. humeana that was not previously studied, were investigated. The hepatoprotective effect and underlying mechanisms were also assessed. Study design and methods: The main phytoconstituents in the different fractions of the alcoholic leaf extract (dichloromethane and ethyl acetate) were identified using high resolution high-performance liquid chromatography coupled with mass spectrometry (HR-HPLC-MS-MS) based on the fragmentation pattern and molecular formula of the identified compounds and on previous literature. In addition, the hepatoprotective, anti-inflammatory and antioxidant activities of three doses of E. neillii alcoholic leaf extract (100, 250, 500 mg/kg) were investigated in methotrexate (MTX)-intoxicated rats and were compared with those of silymarin-treated rats. Liver function parameters were obtained, and a histopathological study was performed. In addition, the anti-inflammatory mediators and the antioxidant system in the liver tissues were assessed. Results: The dichloromethane extract revealed an abundance of alkaloids (25), in addition to tentatively identifying flavone (1), flavanone (1) and three fatty acids. Additionally, thirty-six compounds belonging to different classes of phytoconstituents with a predominance of flavonoids (21), O/C-flavone and flavonol glycosides, followed by alkaloids (9), fatty acids (4) and (2), and phenolic glycoside were identified in the ethyl acetate extract. Compared with MTX, alcoholic leaf extract (500 mg/kg) ameliorated the MTX-induced alterations by improving several biochemical marker levels, fighting oxidative stress in serum and liver tissues, and decreasing inflammatory mediators; this finding was further confirmed by the histopathological study. Conclusion: This study reveals E. neillii, a rich source of flavonoids and alkaloids, which could be further exploited to provide a promising and safe antihepatotoxic agent source. 2018 Elsevier GmbH en_US
dc.description.uri https://www.scimagojr.com/journalsearch.php?q=17067&tip=sid&clean=0
dc.language.iso English en_US
dc.publisher Elsevier GmbH en_US
dc.relation.ispartofseries Phytomedicine
dc.relation.ispartofseries 53
dc.subject Alkaloids en_US
dc.subject Antihepatotoxic en_US
dc.subject Erythrina, neillii en_US
dc.subject Flavonoids en_US
dc.subject alkaline phosphatase en_US
dc.subject alkaloid derivative en_US
dc.subject apigenin en_US
dc.subject aspartate aminotransferase en_US
dc.subject dextro amino acid aminotransferase en_US
dc.subject Erythrina extract en_US
dc.subject Erythrina neillii extract en_US
dc.subject fatty acid en_US
dc.subject flavanone en_US
dc.subject flavone en_US
dc.subject glutathione en_US
dc.subject liver protective agent en_US
dc.subject silymarin en_US
dc.subject unclassified drug en_US
dc.subject antioxidant en_US
dc.subject flavonoid en_US
dc.subject glycoside en_US
dc.subject methotrexate en_US
dc.subject nonsteroid antiinflammatory agent en_US
dc.subject plant extract en_US
dc.subject protective agent en_US
dc.subject acute toxicity en_US
dc.subject adult en_US
dc.subject animal experiment en_US
dc.subject animal model en_US
dc.subject antiinflammatory activity en_US
dc.subject antioxidant activity en_US
dc.subject Article en_US
dc.subject controlled study en_US
dc.subject coral en_US
dc.subject Erythrina en_US
dc.subject high performance liquid chromatography en_US
dc.subject histopathology en_US
dc.subject human en_US
dc.subject liver cell en_US
dc.subject liver function en_US
dc.subject liver protection en_US
dc.subject liver tissue en_US
dc.subject liver toxicity en_US
dc.subject male en_US
dc.subject nonhuman en_US
dc.subject phytochemistry en_US
dc.subject plant leaf en_US
dc.subject priority journal en_US
dc.subject rat en_US
dc.subject animal en_US
dc.subject chemistry en_US
dc.subject drug effect en_US
dc.subject Erythrina en_US
dc.subject liver en_US
dc.subject metabolism en_US
dc.subject oxidative stress en_US
dc.subject pathology en_US
dc.subject plant leaf en_US
dc.subject tandem mass spectrometry en_US
dc.subject toxic hepatitis en_US
dc.subject Wistar rat en_US
dc.subject Animals en_US
dc.subject Anti-Inflammatory Agents, Non-Steroidal en_US
dc.subject Antioxidants en_US
dc.subject Chemical and Drug Induced Liver Injury en_US
dc.subject Chromatography, High Pressure Liquid en_US
dc.subject Erythrina en_US
dc.subject Flavonoids en_US
dc.subject Glycosides en_US
dc.subject Liver en_US
dc.subject Male en_US
dc.subject Methotrexate en_US
dc.subject Oxidative Stress en_US
dc.subject Plant Extracts en_US
dc.subject Plant Leaves en_US
dc.subject Protective Agents en_US
dc.subject Rats, Wistar en_US
dc.subject Tandem Mass Spectrometry en_US
dc.title Hepatoprotective activity of Erythrina neillii leaf extract and characterization of its phytoconstituents en_US
dc.type Article en_US
dcterms.isReferencedBy Amer, M.E., Shamma, M., Freyer, A.J., The tetracyclic Erythrina alkaloids (1991) J. Nat. Prod., 54, pp. 329-363. , https://doi.org/10.1021/np50074a001; Anupama, V., Narmadha, R., Gopalakrishnan, V.K., Devaki, K., Enzymatic alteration in the vital organs of streptozotocin diabetic rats treated with aqueous extract of Erythrina Variegata bark (2012) Int. J. Pharm. Pharm. Sci., 4, pp. 134-147; Becchi, M., Fraisse, D., Fast atom bombardment and fast atom bombardment collision-activated dissociation/mass analysed ion kinetic energy analysis of C-glycosidic flavonoids (1989) Biomed. Environ. Mass Spectrom., 18, pp. 122-130. , https://doi.org/10.1002/bms.1200180207; Beutler, E., Duron, O., Kelly, B.M., Improved method for the determination of blood glutathione (1963) J. Lab. Clin. Med., 61, pp. 882-888; Bott, R., Bancroft's theory and practice of histological techinques (2014) IGARSS 2014, , https://doi.org/10.1007/s13398-014-0173-7.2; Chawla, A.S., Kapoor, V.K., Erythrina Alkaloids (1995) Alkaloids Chem. Biol. Perspect., 9, pp. 85-153. , https://doi.org/10.1016/B978-0-08-042089-9.50010-3; Cui, L., Thuong, P.T., Fomum, Z.T., Oh, W.K., A new erythrinan alkaloid from the seed of Erythrina addisoniae (2009) Arch. Pharm. Res., 32, pp. 325-328. , https://doi.org/10.1007/s12272-009-1302-2; De, S., Sen, T., Chatterjee, M., Reduction of oxidative stress by an ethanolic extract of leaves of Piper betle (Paan) Linn. decreased methotrexate-induced toxicity (2015) Mol. Cell. Biochem., 409, pp. 191-197. , https://doi.org/10.1007/s11010-015-2524-x; Donfack, J.H., Njayou, F.N., Rodrigue, T.K., Chuisseu, D.D.P., Tchana, N.A., Vita Finzi, P., Tchouanguep, M.F., Moundipa, P.F., Study of a hepatoprotective and antioxidant fraction from Erythrina senegalensis stem bark extract: in vitro and in vivo (2008) Pharmacologyonline, 1, pp. 120-130; Dyke, S.F., Quessy, S.N., Erythrina and related alkaloids (1981) Alkaloids Chem. Physiol., 18, pp. 1-98. , https://doi.org/10.1016/S1876-0813(08)60236-5; Ercisli, S., Orhan, E., Chemical composition of white (Morus alba), red (Morus rubra) and black (Morus nigra) mulberry fruits (2007) Food Chem., 103, pp. 1380-1384. , https://doi.org/10.1016/j.foodchem.2006.10.054; Farag, M.A., Mekky, H., El-Masry, S., Metabolomics driven analysis of Erythrina lysistemon cell suspension culture in response to methyl jasmonate elicitation (2016) J. Adv. Res., 7, pp. 681-689. , https://doi.org/10.1016/j.jare.2016.07.002; Farag, M.A., Rasheed, D.M., Kropf, M., Heiss, A.G., Metabolite profiling in Trigonella seeds via UPLC-MS and GC-MS analyzed using multivariate data analyses (2016) Anal. Bioanal. Chem., 408, pp. 8065-8078. , https://doi.org/10.1007/s00216-016-9910-4; Ferreres, F., Silva, B.M., Andrade, P.B., Seabra, R.M., Ferreira, M.A., Approach to the study of C-glycosyl flavones by ion trap HPLC-PAD-ESI/MS/MS: application to seeds of quince (Cydonia oblonga) (2003) Phytochem. Anal., 14, pp. 352-359. , https://doi.org/10.1002/pca.727; Gabr, S.K., Bakr, R.O., Elshishtawy, H.M., El-Fishawy, A.M., El-Alfy, T.S., Botanical and genetic characters of Erythrina�neillii cultivated in Egypt (2017) Rev. Bras. Farmacogn., 27, pp. 273-281. , https://doi.org/https://doi.org/10.1016/j.bjp.2017.02.005; Garca-Mateos, R., Soto-Hernndez, M., Vibrans, H., Erythrina americana miller (Colorn; Fabaceae), a versatile resource from Mexico: a review (2001) Econ. Bot., , https://doi.org/10.1007/BF02866562; Garin-Aguilar, M.E., del Toro, G.V., Soto-Hernndez, M., Kite, G., High-performance liquid chromatography-mass spectrometric analysis of alkaloids extracted from seeds of Erythrina herbacea (2005) Phytochem. Anal., 16, pp. 302-306. , https://doi.org/10.1002/pca.821; Grisham, M.B., MacDermott, R.P., Deitch, E.A., Oxidant defense mechanisms in the human colon (1990) Inflammation, 14, pp. 669-680; Hassaan, Y., Handoussa, H., El-Khatib, A.H., Linscheid, M.W., El Sayed, N., Ayoub, N., Evaluation of plant phenolic metabolites as a source of Alzheimer's drug leads (2014) Biomed Res. Int., 2014. , https://doi.org/10.1155/2014/843263; Hussain, M.M., Tuhin, M.T.H., Akter, F., Rashid, M.A., Constituents of Erythrina - a potential source of secondary metabolities: a review (2016) Bangladesh Pharm. J., 19, p. 237. , https://doi.org/10.3329/bpj.v19i2.29287; Juma, B.F., Majinda, R.R.T., Erythrinaline alkaloids from the flowers and pods of Erythrina lysistemon and their DPPH radical scavenging properties (2004) Phytochemistry, 65, pp. 1397-1404. , https://doi.org/10.1016/j.phytochem.2004.04.029; Kose, E., Sapmaz, H.I., Sarihan, E., Vardi, N., Turkoz, Y., Ekinci, N., Beneficial effects of montelukast against methotrexate-induced liver toxicity: a biochemical and histological study (2012) Sci. World J., 2012, pp. 1-6. , https://doi.org/10.1100/2012/987508; Majinda, R.R.T., Wanjala, C.C.W., Juma, B.F., Bioactive non-alkaloidal constituents from the genus Erythrina (2005) Stud. Nat. Prod. Chem., 32, pp. 821-853. , https://doi.org/10.1016/S1572-5995(05)80070-5; Mohammed, M.M.D., Ibrahim, N.A., Awad, N.E., Matloub, A.A., Mohamed-Ali, A.G., Barakat, E.E., Mohamed, A.E., Colla, P.L., Anti-HIV-1 and cytotoxicity of the alkaloids of Erythrina abyssinica Lam. growing in Sudan (2012) Nat. Prod. Res., 26, pp. 1565-1575. , https://doi.org/10.1080/14786419.2011.573791; Mujahid, M., Hussain, T., Siddiqui, H.H., Hussain, A., Evaluation of hepatoprotective potential of Erythrina indica leaves against antitubercular drugs induced hepatotoxicity in experimental rats (2017) J. Ayurveda Integr. Med., 8, pp. 7-12. , https://doi.org/10.1016/j.jaim.2016.10.005; Mukherjee, S., Ghosh, S., Choudhury, S., Adhikary, A., Manna, K., Dey, S., Sa, G., Chattopadhyay, S., Pomegranate reverses methotrexate-induced oxidative stress and apoptosis in hepatocytes by modulating Nrf2-NF-?B pathways (2013) J. Nutr. Biochem., 24, pp. 2040-2050. , https://doi.org/10.1016/j.jnutbio.2013.07.005; Nishikimi, M., Appaji Rao, N., Yagi, K., The occurrence of superoxide anion in the reaction of reduced phenazine methosulfate and molecular oxygen (1972) Biochem. Biophys. Res. Commun., 46, pp. 849-854. , https://doi.org/10.1016/S0006-291X(72)80218-3; Nyandoro, S.S., Munissi, J.J.E., Kombo, M., Mgina, C.A., Pan, F., Gruhonjic, A., Fitzpatrick, P., Erdlyi, M., Flavonoids from Erythrina schliebenii (2017) J. Nat. Prod., 80, pp. 377-383. , https://doi.org/10.1021/acs.jnatprod.6b00839; OECD guidelines for the testing of chemicals, section 4, test no. 425: acute oral toxicity - up-and-down procedure (2001) Guidel. Test. Chem., 26. , https://doi.org/10.1787/9789264071049-en; Pravenec, M., Kozich, V., Krijt, J., Sokolov, J., Zdek, V., Landa, V., Simkov, M., Kurtz, T.W., Folate deficiency is associated with oxidative stress, increased blood pressure, and insulin resistance in spontaneously hypertensive rats (2013) Am. J. Hypertens., 26, pp. 135-140. , https://doi.org/10.1093/ajh/hps015; Setti-Perdigo, P., Serrano, M.A.R., Flausino, O.A., Bolzani, V.S., Guimares, M.Z.P., Castro, N.G., Erythrina mulungu alkaloids are potent inhibitors of neuronal nicotinic receptor currents in mammalian cells (2013) PLoS One, 8. , https://doi.org/10.1371/journal.pone.0082726; Stevens, J.F., Ivancic, M., Hsu, V.L., Deinzer, M.L., Prenylflavonoids from Humulus lupulus (1997) Phytochemistry, 44, pp. 1575-1585. , https://doi.org/10.1016/S0031-9422(96)00744-3; Stickel, F., Schuppan, D., Herbal medicine in the treatment of liver diseases (2007) Dig. Liver Dis., 39, pp. 293-304. , https://doi.org/10.1016/j.dld.2006.11.004; Tunali-Akbay, T., Sehirli, O., Ercan, F., Sener, G., Resveratrol protects against methotrexate-induced hepatic injury in rats (2010) J. Pharm. Pharm. Sci., 13, pp. 303-310; Wanjala, C.C.W., Majinda, R.R.T., Two novel glucodienoid alkaloids from Erythrina latissima seeds (2000) J. Nat. Prod., 63, pp. 871-873. , https://doi.org/10.1021/np990540d; Wu, W.N., Huang, C.H., Structural elucidation of isoquinoline, isoquinolone, benzylisoquinoline, aporphine, and phenanthrene alkaloids using API-ionspray tandem mass spectrometry (2006) Chinese Pharm. J., 58, pp. 41-55
dcterms.source Scopus
dc.identifier.doi https://doi.org/10.1016/j.phymed.2018.09.231
dc.identifier.doi PubMed ID 30668417
dc.Affiliation October University for modern sciences and Arts (MSA)


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search MSAR


Advanced Search

Browse

My Account