Locally symmetric f-associated standard static spacetimes
Loading...
Date
2018-10
Journal Title
Journal ISSN
Volume Title
Type
Article
Publisher
WILEY
Series Info
MATHEMATICAL METHODS IN THE APPLIED SCIENCES;Volume: 41 Issue: 15 Pages: 5733-5736 Special Issue: SI
Doi
Scientific Journal Rankings
Abstract
In this note, we study and explore locally symmetric f-associated standard static spacetimes I-f x M. Necessary and sufficient conditions on f-associated standard static spacetimes to be locally symmetric are derived. Some implications for these conditions are considered.
Description
Accession Number: WOS:000448615100002
Keywords
University for TENSORS, MANIFOLDS, 2ND-ORDER, SCALAR CURVATURE, COVARIANT DERIVATIVES, second-order symmetric tensor, standard static spacetime, locally symmetric
Citation
Bishop RL, O'Neill B. Manifolds of negative curvature. Trans Amer Math Soc. 1969; 145: 1‐ 49. CrossrefWeb of Science®Google Scholar 2El‐Sayied HK, Shenawy S, Syied N. Conformal vector fields on doubly warped product manifolds and applications. Adv Math Phys. Volume 2016; 2016: Article ID 6508309, 11 pages. https://doi.org/10.1155/2016/6508309 Google Scholar 3El‐Sayied HK, Shenawy S, Syied N. On symmetries of generalized Robertson‐Walker spacetimes and applications. J Dyn Syst Geom Theor. 2017; 15( 1): 51‐69. https://doi.org/10.1080/1726037X.2017.1323418 Google Scholar 4Mantica A, Shenawy S. Einstein‐like warped product manifolds. Int J Geom Meth Mod Phy. 2017; 14. https://doi.org/10.1142/S0219887817501663 Web of Science®Google Scholar 5O'Neill B. Semi‐Riemannian Geometry with Applications to Relativity. Academic Press Limited: London, 1983. Google Scholar 6Shenawy S, Unal B. 2−Killing vector fields on warped product manifolds. Int J Math. 2015; 26( 8):1550065. (17 pages. https://doi.org/10.1142/S0129167X15500652 Google Scholar 7Shenawy S, Unal B. The W2− curvature tensor on warped product manifolds and applications. Int J Geom Meth Mod Phy. 2016; 13( 7):1650099. (14 pages. https://doi.org/10.1142/S0219887816500997 Web of Science®Google Scholar 8Allison DE. Geodesic Completeness in Static Space‐times. Geom Dedicata. 1988; 26: 85‐ 97. CrossrefWeb of Science®Google Scholar 9Allison DE. Energy conditions in standard static space‐times. Gen Relativ Gravitation. 1998; 20( 2): 115‐ 122. CrossrefGoogle Scholar 10Allison DE, Ünal B. Geodesic structure of standard static space‐times. J Geom Phys. 2003; 46( 2): 193‐ 200. CrossrefWeb of Science®Google Scholar 11Beem JK, Ehrlich PE, Easley KL. Global Lorentzian Geometry. 2nd edn. Marcel Dekker: New York, 1996. Google Scholar 12El‐Sayied HK, Shenawy S, Syied N. Symmetries of f−associated standard static spacetimes and applications. J Egypt Math Soc. 2017.https://doi.org/10.1016/j.joems.2017.07.002 CrossrefGoogle Scholar 13Hawking SW, Ellis GFR. The Large Scale Structure of Space‐time. Cambridge University Press: UK, 1973. CrossrefGoogle Scholar 14Eisenhart L. Symmetric tensors of the second order whose first covariant derivatives are zero. Trans Am Math Soc. 1923; 25( 2): 297‐ 306. CrossrefGoogle Scholar 15Levy H. Symmetric Tensors of the second order whose covariant derivatives vanish. Ann Math, Second Series, 1925. 1925; 27( 2): 91‐ 98. CrossrefGoogle Scholar 16Sharma Ramesh. Second order parallel tensor in real and complex space forms. Int J Math & Math Sci. 1989; 12( 4): 787‐ 790. CrossrefGoogle Scholar 17Dobarro F, Dozo EL. Scalar curvature and warped products of Riemannian manifolds. Trans Amer Math Soc. 1987; 303: 161‐ 168. CrossrefWeb of Science®Google Scholar 18Ehrlich PE, Jung Y‐T, Kim S‐B. Constant scalar curvatures on warped product manifolds. Tsukuba J Math. 1996; 20( 1): 239‐ 256. CrossrefGoogle Scholar 19Ehrlich PE, Jung Y‐T, Kim S‐B, Shin C‐G. Partial differential equations and scalar curvature of warped product manifolds. Nonlinear Analysis. 2001; 44: 545‐ 553.