Path and Path Deviation equations of Fractal Space-Times: A Brief Introduction

Loading...
Thumbnail Image

Date

2008

Journal Title

Journal ISSN

Volume Title

Type

Article

Publisher

arXiv.org e-Print archive

Series Info

arXiv.org e-Print archive;

Doi

Scientific Journal Rankings

Abstract

The idea that the quantum space-time of microphysics may be fractal everywhere was intensively investigated recently, and several authors have presented the geodesic equations of different fractal space - times. In the present work we obtain the geodesic and the geodesic deviation equations in fractal space-times by using the Bazanski method. We also extend this approach to obtain the equations of motion for spinning and spinning charged particles in the above-mentioned spaces, in a similar way to their counterparts in Riemannian geometry.

Description

MSA Google Scholar

Keywords

University of Path Deviation equations of Fractal Space

Citation

[1] Agop, M. and Gottlieb, I. 2006, J. Math. Phys., 47, 053503 [2] Agop, M., Ioannou, P. D. and Nica, D. 2005, J. Math. Phys., 46, 062110 [3] Bazanski, S. L. 1989, J. Math. Phys., 30, 1018 [4] Gottlieb, I., Agop, M., Ciobanu, G. and Stroe, A. 2006, Chaos, Solitons & Fractals, 30, 380 [5] Kahil, M. E. 2006, J. Math. Phys., 47, 052501 [6] Nelson, E. 1966, Phys. Rev., 150, 1079 [7] Nottale, L. and Schneider, J. 1984, J. Math. Phys., 25, 1296 [8] Nottale, L. 1994, Chaos, Solitons & Fractals, 4, 361 [9] Nottale, L. 1998 Chaos, Solitons & Fractals, 9, 1051 [10] Nottale, L. 2005 Chaos, Solitons & Fractals, 25, 797 [11] Nottale, L., Celerier, M.-N. and Lehner, T. 2006, J. Math. Phys, 47, 032303 [12] Wanas, M. I., Melek, M. and Kahil, M. E. 1995 Astrophys. Space Sci., 228, 273 [13] Wanas, M. I. and Kahil, M. E. 1999, Gen. Rel. Grav., 31, 1921

Full Text link