Innovation of Radically New Colorant Hybrid Nanocomposite for Printing Various Textile Fabrics

Show simple item record

dc.contributor.author Hebeish, A. A.
dc.contributor.author Shahin, A.A
dc.contributor.author RaghebI., A.
dc.contributor.author E. E, Abd El-Thalouth
dc.contributor.author H. A, Allam
dc.contributor.author H A, Shaban
dc.date.accessioned 2019-11-16T07:49:38Z
dc.date.available 2019-11-16T07:49:38Z
dc.date.issued 2019-01
dc.identifier.citation Cited References in Web of Science Core Collection: 59
dc.identifier.citation M. E. El-Naggar, A. G. Hassabo, A. L. Mohamed, and T. I. Shaheen, J. Colloid Interface Sci., 498, 413 (2017). CrossRefPubMedGoogle Scholar 2. N. S. Elshemy, A. G. Hassabo, Z. M. Mahmoud, and K. Haggag, JTATM, 10, 1 (2016). Google Scholar 3. A. L. Mohamed, M. E. El-Naggar, T. I. Shaheen, and A. G. Hassabo, Microsyst. Technol., 22, 979 (2016). CrossRefGoogle Scholar 4. A. A. Nada, A. G. Hassabo, A. L. Mohamed, M. M. Mounier, and N. Y. Abou Zeid, J. Appl. Pharm. Sci., 6, 142 (2016). CrossRefGoogle Scholar 5. A. L. Mohamed, M. E. El-Naggar, T. I. Shaheen, and A. G. Hassabo, Int. J. Biol. Macromol., 95, 429 (2017). CrossRefPubMedGoogle Scholar 6. A. G. Hassabo, A. A. Nada, H. M. Ibrahim, and N. Y. Abou-Zeid, Carbohydr. Polym., 122, 343 (2015). CrossRefPubMedGoogle Scholar 7. N. A. Ibrahim, A. A. Nada, A. G. Hassabo, B. M. Eid, A. M. Noor El-Deen, and N. Y. Abou-Zeid, Chem. Pap., 71, 1365 (2017). CrossRefGoogle Scholar 8. A. Hebeish, S. Shaarawy, A. G. Hassabo, and A. El-Shafei, Der Pharm. Chem., 8, 259 (2016). Google Scholar 9. C. W. M.M. Yuen, Y. Li, S. K. Ku, C. M. Mak, and C. W. Kan, AATCC Rev., 5, 41 (2005). Google Scholar 10. A. P. S.S. Sawhney, B. Condon, K. V. Singh, S. S. Pang, G. Li, and D. Hui, Text. Res. J., 78, 731 (2008). CrossRefGoogle Scholar 11. D. P. Chattopadhyay and B. H. Patel, J. Eng. Fiber Fabr., 5, 1 (2010). Google Scholar 12. P. Brown and K. Stevens, “Nanofibers and Nanotechnology in Textiles”, The Textile Institute and Woodhead Publishing, 2007. Google Scholar 13. A. E. Asmah, V. Okpattah, and C. Frimpong, Int. J. Art. Human., 4, 41 (2015). Google Scholar 14. M. Clark, “Handbook of Textile and Industrial Dyeing: Volume 2: Applications of Dyes”, Elsevier Sciences & Technology, 2011. Google Scholar 15. M. Clark, “Handbook of Textile and Industrial Dyeing: Volume 1: Principles, Processes and Types of Dyes”, Woodhead Publishing, 2011. Google Scholar 16. M. Fryberg, Rev. Prog. Color. Relat. Topic., 35, 1 (2005). Google Scholar 17. A. Hebeish, M. Rekaby, A. A. Shahin, and A. A. Ragheb, Egypt._J. Chem., 59, 99 (2016). CrossRefGoogle Scholar 18. H. Ujiie, “Digital Printing of Textiles”, Woodhead Publishing, 2006. Google Scholar 19. A. Humphries, J. R. Muff, and R. Seddon, Colourage, 32, 15 (1985). Google Scholar 20. A. Poehlmann, Text. Indust. Dyegist., 11, 4 (1992). Google Scholar 21. A. Roessler and D. Crettenand, Dyes Pigm., 63, 29 (2004). CrossRefGoogle Scholar 22. J. J. Lee, W. S. Shim, I. S. Kim, and J. P. Kim, Fiber. Polym., 6, 244 (2005). CrossRefGoogle Scholar 23. M. D. Teli, R. Paul, S. M. Landage, and A. Aich, Indian J. Fibre Text. Res., 26, 101 (2001). Google Scholar 24. S. M. Burkinshaw and Y.-A. Son, Dyes Pigm., 87, 132 (2010). CrossRefGoogle Scholar 25. D. Thetford and A. P. Chorlton, Dyes Pigm., 61, 49 (2004). CrossRefGoogle Scholar 26. F. Y. She, D. M. Qi, Z. J. Chen, J. Z. Shao, and L. Yang, Adv. Mater. Res., 441, 145 (2012). CrossRefGoogle Scholar 27. M. Božič and V. Kokol, Dyes Pigm., 76, 299 (2008). CrossRefGoogle Scholar 28. E. P. A. A.Kumbasar, “Natural Dyes”, InTech, 2011. Google Scholar 29. A. Roessler and X. Jin, Dyes Pigm., 59, 223 (2003). CrossRefGoogle Scholar 30. Alain Meunier, “Clays”, Springer-Verlag Berlin Heidelberg, 2005. Google Scholar 31. F. Bergaya, B. K. G.G. Theng, and L. Gerhard, “Developments in Clay Science”, Elsevier, 2006. Google Scholar 32. F. Bergaya and G. Lagaly, “Handbook of Clay Science”, 2nd ed., Elsevier, 2013. Google Scholar 33. D. W. Hou, G. P. Zhang, R. R. Pant, Z. X. Wei, and S. L. Shen, Nanomaterials, 6, 204 (2016). CrossRefPubMedCentralGoogle Scholar 34. Wikipedia the Free Encyclopedia, “Clay Minerals”, Available at https://en.wikipedia.org/wiki/Clay_minerals. Google Scholar 35. I. Sondi and V. Pravdic, Croat. Chem. Acta, 71, 1061 (1998). Google Scholar 36. X. F. Liang, Y. M. Xu, X. Tan, L. Wang, Y. B. Sun, D. S. Lin, Y. Sun, X. Qin, and Q. Wang, Colloid Surf. APhysicochem. Eng. Asp., 426, 98 (2013). CrossRefGoogle Scholar 37. L. G. Yan, L. L. Qin, H. Q. Yu, S. Li, R. R. Shan, and B. Du, J. Mol. Liq., 211, 1074 (2015). CrossRefGoogle Scholar 38. R. H. Huang, B. Wang, B. C. Yang, D. S. Zheng, and Z. Q. Zhang, Desalination, 280, 297 (2011). CrossRefGoogle Scholar 39. B. Micó-Vicent, J. Jordán, F. Martínez-Verdú, and R. Balart, J. Mater. Sci., 52, 889 (2017). CrossRefGoogle Scholar 40. B. Micó-Vicent, F. M. Martínez-Verdú, A. Novikov, A. Stavitskaya, V. Vinokurov, E. Rozhina, R. Fakhrullin, R. Yendluri, and Y. Lvov, Adv. Funct. Mater., 27, 1703553 (2017). Google Scholar 41. A. Hebeish, A. Ragheb, M. Gouda, and H. Shaban, “Nanotechnology in Textile with Contribution to Pigment Printing”, LAP Lambert Academic Publishing, 2012. Google Scholar 42. P. Kubelka and F. Munk, Z. Tech. Phys., 12, 593 (1931). Google Scholar 43. K. T. Mehta, M. C. Bhavsar, P. M. Vora, and H. S. Shah, Dyes Pigm., 5, 329 (1984). CrossRefGoogle Scholar 44. A. Waly, M. M. Marie, N. Y. Abou-Zeid, M. A. El-Sheikh, and A. L. Mohamed, Egypt. J. Text. Polym. Sci. Technol., 12, 101 (2008). Google Scholar 45. A. Waly, M. M. Marie, N. Y. Abou-Zeid, M. A. El-Sheikh, and A. L. Mohamed, in “3rd International Conference of Textile Research Division, NRC; Textile Processing: State of the Art & Future Developments”, Cairo, Egypt, 529, 2006. Google Scholar 46. A. G. Hassabo, MSc. Dissertation, El-Azhar University, Cairo, Egypt, 2005. Google Scholar 47. H. G. Völz, “Industrial Color Testing”, 2nd ed., Wiley-VCH Verlag GmbH & Co. KGaA, 2003. Google Scholar 48. J. Xin, “Total Colour Management in Textiles”, Woodhead Publishing, 2006. Google Scholar 49. M. L. Gulrajani, “Colour Measurement”, Woodhead Publishing, 2010. CrossRefGoogle Scholar 50. R. McDonald, “Colour Physics for Industry”, 2nd ed., The Society of Dyers and Colourists, 1997. Google Scholar 51. A. L. Mohamed, A. G. Hassabo, S. Shaarawy, and A. Hebeish, Carbohydr. Polym., 178, 251 (2017). CrossRefPubMedGoogle Scholar 52. Y. Cai, M. T. Pailthrope, and S. K. David, Text. Res. J., 69, 440 (1999). CrossRefGoogle Scholar 53. M. H. Abo-Shosha, F. A. Nassar, K. Haggag, Z. El-Sayed, and A. G. Hassabo, Res. J. Text. Apparel, 13, 65 (2009). CrossRefGoogle Scholar 54. A. G. Hassabo, M. Erberich, C. Popescu, and H. Keul, Res. Rev. Polym., 6, 118 (2015). Google Scholar 55. A. G. Hassabo, A. Mendrek, C. Popescu, H. Keul, and M. Möller, Res. J. Text. Apparel, 18, 36 (2014). CrossRefGoogle Scholar 56. AATCC Test Method 61-1993, “Colour Fastness to Washing: Characterization of Textile Colorants”, American Association of Textile Chemists and Colorists, 1993. Google Scholar 57. AATCC Test Method 8-1993, “Colour Fastness to Crocking”, American Association of Textile Chemists and Colorists, 1993. Google Scholar 58. AATCC Test Method 15-2002, “Colour Fastness to Perspiration”, American Association of Textile Chemists and Colorists, 1993. Google Scholar 59. AATCC, “Colour Fastness to Light: Carbon–Arc Lamb, Continuous Light”, American Association of Textile Chemists and Colorists, 1993. en_US
dc.identifier.issn 1229-9197
dc.identifier.other https://doi.org/10.1007/s12221-019-7809-3
dc.identifier.uri https://cutt.ly/5eBAELW
dc.description Accession Number: WOS:000458864500010 en_US
dc.description.abstract New benign colorant nanoparticles were innovated. The innovation is based on reacting the Indigo Blue Vat Dye with a natural clay named montmorillonite (K10) under sonication. A mixture of the dye and clay (1:1) at a ratio was used. The obtained new colorant nanoparticles in the form of hybrid nanocomposites were applied as a nano pigment in printing on various fabrics. The new colorant succeeded in printing silk, wool, cotton, polyester, and nylon as well as their different blends in the presence and absence of binder. Prints of the new colorant were compared with those obtained using commercial pigment. The effect of adding different amounts of binder to the printing paste on major technical properties of the prints was also investigated. Evaluation of the various printed fabrics was performed through monitoring color strength (K/S), TEM images, SEM micrographs, and overall fastness properties. en_US
dc.description.uri https://www.scimagojr.com/journalsearch.php?q=144862&tip=sid&clean=0
dc.language.iso en_US en_US
dc.publisher KOREAN FIBER SOC en_US
dc.relation.ispartofseries FIBERS AND POLYMERS;Volume: 20 Issue: 1 Pages: 69-79
dc.relation.uri https://cutt.ly/KeGYGbp
dc.subject ACID en_US
dc.subject SYSTEM en_US
dc.subject SULFUR en_US
dc.subject ADSORPTION en_US
dc.subject FUNCTIONALIZATION en_US
dc.subject REDUCTION en_US
dc.subject NANOPARTICLES en_US
dc.subject COTTON en_US
dc.subject AQUEOUS-SOLUTION en_US
dc.subject VAT DYES en_US
dc.subject Binder and various fabrics en_US
dc.subject Pigment en_US
dc.subject Montmorillonite (MMT) en_US
dc.subject New hybrid nanocomposite en_US
dc.subject Indigo blue vat dye en_US
dc.title Innovation of Radically New Colorant Hybrid Nanocomposite for Printing Various Textile Fabrics en_US
dc.type Article en_US
dc.identifier.doi https://doi.org/10.1007/s12221-019-7809-3
dc.Affiliation October University for modern sciences and Arts (MSA)


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search MSAR


Advanced Search

Browse

My Account