Dual approach for the colorimetric determination of unamplified microRNAs by using citrate capped gold nanoparticles

Show simple item record

dc.contributor.author Nossier A.I.
dc.contributor.author Abdelzaher H.
dc.contributor.author Matboli M.
dc.contributor.author Eissa S.
dc.contributor.other Biochemistry Department
dc.contributor.other Faculty of Pharmacy
dc.contributor.other Misr University for Science and Technology (MUST)
dc.contributor.other 6th October City
dc.contributor.other Giza
dc.contributor.other Egypt; Faculty of Biotechnology
dc.contributor.other October University for Modern Sciences & Arts
dc.contributor.other 6th October City
dc.contributor.other Cairo
dc.contributor.other Egypt; Oncology Diagnostic Unit
dc.contributor.other Medical Biochemistry & Molecular Biology Department
dc.contributor.other Faculty of Medicine
dc.contributor.other Ain Shams University
dc.contributor.other Cairo
dc.contributor.other Egypt; Faculty of Medicine Ain Shams Research Institute (MASRI)
dc.contributor.other Cairo
dc.contributor.other Egypt
dc.date.accessioned 2020-01-09T20:40:56Z
dc.date.available 2020-01-09T20:40:56Z
dc.date.issued 2018
dc.identifier.issn 263672
dc.identifier.other https://doi.org/10.1007/s00604-018-2767-9
dc.identifier.other PubMedID29594755
dc.identifier.uri https://t.ly/rxxeW
dc.description Scopus
dc.description.abstract The authors describe a method for the colorimetric determination of unamplified microRNA. It is based on the use of citrate-capped gold nanoparticles (AuNPs) and, alternatively, a microRNA-probe hybrid or a magnetically extracted microRNA that serve as stabilizers against the salt-induced aggregation of AuNPs. The absorbance ratios A525/A625 of the reacted AuNP solutions were used to quantify the amount of microRNA. The assay works in the range of 5�25�pmol microRNA. The lower limit of detection (LOD) is 10�pmol. The performance of the method was tested by detection of microRNA-210-3p in totally extracted urinary microRNA from normal, benign, and bladder cancer subjects. The sensitivity and specificity for qualitative detection of urinary microRNA-210-3p using the assay are 74% and 88% respectively, which is consistent with real time PCR based assays. The assay was applied to the determination of specific microRNA by using its specific oligo targeter or following magnetic isolation of the desired microRNA. The method is simple, cost-efficient, has a short turn-around time and requires minimal equipment and personnel. � 2018, Springer-Verlag GmbH Austria, part of Springer Nature. en_US
dc.language.iso English en_US
dc.publisher Springer-Verlag Wien en_US
dc.relation.ispartofseries Microchimica Acta
dc.relation.ispartofseries 185
dc.subject AuNPs en_US
dc.subject Bladder cancer en_US
dc.subject Magnetic nanoparticles en_US
dc.subject MicroRNA detection en_US
dc.subject MicroRNA-210-3p en_US
dc.subject Oligonucleotide adsorption en_US
dc.subject Oligotargeter en_US
dc.subject Salt-induced aggregation en_US
dc.subject Streptavidin en_US
dc.subject citric acid en_US
dc.subject gold en_US
dc.subject metal nanoparticle en_US
dc.subject microRNA en_US
dc.subject MIRN210 microRNA, human en_US
dc.subject chemistry en_US
dc.subject colorimetry en_US
dc.subject cost benefit analysis en_US
dc.subject economics en_US
dc.subject human en_US
dc.subject isolation and purification en_US
dc.subject procedures en_US
dc.subject urine en_US
dc.subject Citric Acid en_US
dc.subject Colorimetry en_US
dc.subject Cost-Benefit Analysis en_US
dc.subject Gold en_US
dc.subject Humans en_US
dc.subject Metal Nanoparticles en_US
dc.subject MicroRNAs en_US
dc.title Dual approach for the colorimetric determination of unamplified microRNAs by using citrate capped gold nanoparticles en_US
dc.type Article en_US
dcterms.isReferencedBy Ambros, V., The functions of animal microRNAs (2004) Nature, 431, pp. 350-355. , COI: 1:CAS:528:DC%2BD2cXnsFaiu7g%3D; Krol, J., Sobczak, K., Wilczynska, U., Drath, M., Jasinska, A., Kaczynska, D., Krzyzosiak, W.J., Structural features of microRNA (miRNA) precursors and their relevance to miRNA biogenesis and small interfering RNA/short hairpin RNA design (2004) J Biol Chem, 279, pp. 42230-42239. , COI: 1:CAS:528:DC%2BD2cXnvFWnur0%3D; Iorio, M.V., Croce, C.M., MicroRNA dysregulation in cancer: diagnostics, monitoring and therapeutics. A comprehensive review (2017) EMBO Mol Med, 9, p. 582; Ben-Dov, I.Z., Tan, Y.C., Morozov, P., Wilson, P.D., Rennert, H., Blumenfeld, J.D., Tuschl, T., Urine microRNA as potential biomarkers of autosomal dominant polycystic kidney disease progression: description of miRNA profiles at baseline (2014) PLoS One, 9; Verjans, R., Van Bilsen, M., Schroen, B., MiRNA Deregulation in Cardiac Aging and Associated Disorders (2017) Int Rev Cell Mol Biol, 334, pp. 207-263; Cheng, G., Circulating miRNAs: roles in cancer diagnosis, prognosis and therapy (2015) Adv Drug Deliv Rev, 81, pp. 75-93. , COI: 1:CAS:528:DC%2BC2cXhsFCnsr%2FM; Bertoli, G., Cava, C., Castiglioni, I., MicroRNAs: New Biomarkers for Diagnosis, Prognosis, Therapy Prediction and Therapeutic Tools for Breast Cancer (2015) Theranostics, 5, pp. 1122-1143. , COI: 1:CAS:528:DC%2BC2MXhs1CmtLbP; Wang, J., Chen, J., Sen, S., MicroRNA as Biomarkers and Diagnostics (2016) J Cell Physiol, 231, pp. 25-30. , COI: 1:CAS:528:DC%2BC2MXhsFKntbfJ; Leshkowitz, D., Horn-Saban, S., Parmet, Y., Feldmesser, E., Differences in microRNA detection levels are technology and sequence dependent (2013) RNA, 19, pp. 527-538. , COI: 1:CAS:528:DC%2BC3sXltVyqurs%3D; Tian, T., Wang, J., Zhou, X., A review: microRNA detection methods (2015) Org Biomol Chem, 13, pp. 2226-2238. , COI: 1:CAS:528:DC%2BC2cXitFOrsbnL; Hwang, D.W., Song, I.C., Lee, D.S., Kim, S., Smart magnetic fluorescent nanoparticle imaging probes to monitor micro RNAs (2010) Small, 6, pp. 81-88. , COI: 1:CAS:528:DC%2BC3cXhtFymsw%3D%3D; Li, C., Li, Z., Jia, H., Yan, J., One-step ultrasensitive detection of microRNAs with loop-mediated isothermal amplification (LAMP) (2011) Chem Commun, 47, pp. 2595-2597. , COI: 1:CAS:528:DC%2BC3MXitVCms7w%3D; Li, F., Peng, J., Wang, J., Tang, H., Tan, L., Xie, Q., Yao, S., Carbon nanotube-based label-free electrochemical biosensor for sensitive detection of miRNA-24 (2014) Biosens Bioelectron, 54, pp. 158-164. , COI: 1:CAS:528:DC%2BC2cXhtFKqsLo%3D; Zhu, X., Zhou, X., Xing, D., Label-free detection of micro-RNA: two-step signal enhancement with a hairpin-probebased graphene fluorescence switch and isothermal amplification (2013) Chemistry, 19, pp. 5487-5494. , COI: 1:CAS:528:DC%2BC3sXjtlarsLs%3D; Mieszawska, A.J., Mulder, W.J.M., Fayad, Z.A., Cormode, D.P., Multifunctional gold nanoparticles for diagnosis and therapy of disease (2013) Mol Pharm, 10, pp. 831-847. , COI: 1:CAS:528:DC%2BC3sXhsFGqsro%3D; Rechberger, W., Hohenau, A., Leitner, A., Krenn, J.R., Lamprecht, B., Aussenegg, F.R., Optical properties of two interacting gold nanoparticles (2003) Opt Commun, 220, pp. 137-141. , COI: 1:CAS:528:DC%2BD3sXjt1ektr4%3D; Huang, K.S., Lin, Y.C., Su, K.C., Chen, H.Y., An electroporation microchip system for the transfection of zebrafish embryos using quantum dots and GFP genes for evaluation (2007) Biomed Microdevices, 9, pp. 761-768; Liandris, E., Gazouli, M., Andreadou, M., Comor, M., Abazovic, N., Sechi, L.A., Ikonomopoulos, J., Direct detection of unamplified DNA from pathogenic mycobacteria using DNA-derivatized gold nanoparticles (2009) J Microbiol Methods, 78, pp. 260-264. , COI: 1:CAS:528:DC%2BD1MXhtVensLfJ; Nossier, A.I., Mohammed, O.S., Fakhr El-Deen, R.R., Zaghloul, A.S., Eissa, S., Gelatin-modified Gold Nanoparticles for Direct Detection of Urinary total Gelatinase activity: Diagnostic value in Bladder Cancer (2016) Talanta, 161, pp. 511-519. , COI: 1:CAS:528:DC%2BC28XhsFWis7nK; Bonomi, R., Cazzolaro, A., Sansone, A., Scrimin, P., Prins, L.J., Detection of enzyme activity through catalytic signal amplification with functionalized gold nanoparticles (2011) Angew Chem Int Ed Eng, 50, pp. 2307-2312. , COI: 1:CAS:528:DC%2BC3MXisVKltrY%3D; He, S., Liu, D.B., Wang, Z., Cai, K.Y., Jiang, X.Y., Utilization of unmodified gold nanoparticles in colorimetric detection (2011) Sci China Phys Mech Astron, 54, pp. 1757-1765; Li, H., Rothberg, L.J., Colorimetric detection of DNA sequences based on electrostatic interactions with unmodified gold nanoparticles (2004) Proc Natl Acad Sci U S A, 101, pp. 14036-14039. , COI: 1:CAS:528:DC%2BD2cXosVylsrY%3D; Li, H., Rothberg, L.J., Detection of Specific Sequences in RNA Using Differential Adsorption of Single-Stranded Oligonucleotides on Gold Nanoparticles (2005) Anal Chem, 77, pp. 6229-6233. , COI: 1:CAS:528:DC%2BD2MXovFWhtrw%3D; Farkhari, N., Abbasian, S., Moshaii, A., Nikkhah, M., Mechanism of adsorption of single and double stranded DNA on gold and silver nanoparticles: Investigating some important parameters in bio-sensing applications (2016) Colloids Surf B: Biointerfaces, 148, pp. 657-664. , COI: 1:CAS:528:DC%2BC28Xhs1Slt7nN; Hill, H.D., Mirkin, C.A., The bio-barcode assay for the detection of protein and nucleic acid targets using DTT-induced ligand exchange (2006) Nat Protoc, 1, pp. 324-336. , COI: 1:CAS:528:DC%2BD28XhtFOitbjI; Eissa, S., Matboli, M., Hegazy, M.G., Kotb, Y.M., Essawy, N.O., Evaluation of urinary microRNA panel in bladder cancer diagnosis: relation to bilharziasis (2015) Transl Res, 165, pp. 731-739. , COI: 1:CAS:528:DC%2BC2MXhsVaksbs%3D; Lorenzen, J.M., Volkmann, I., Fiedler, J., Schmidt, M., Scheffner, I., Haller, H., Gwinner, W., Thum, T., Urinary miR-210 as a mediator of acute T-cell mediated rejection in renal allograft recipients (2011) Am J Transplant, 11, pp. 2221-2227. , COI: 1:CAS:528:DC%2BC3MXhsVCntr3O; Kilil, G.K., Tilton, L., Karbiwnyk, C.M., NaOH concentration and streptavidin bead type are key factors for optimal DNA aptamer strand separation and isolation (2016) BioTechniques, 61, pp. 114-116; Liu, X., Wang, Y., Chen, P., Wang, Y., Zhang, J., Aili, D., Liedberg, B., Biofunctionalized gold nanoparticles for colorimetric sensing of botulinum neurotoxin a light chain (2014) Anal Chem, 86, pp. 2345-2352. , COI: 1:CAS:528:DC%2BC2cXhs1WntbY%3D; Li, Z.J., Zheng, X.J., Zhang, L., Liang, R.P., Li, Z.M., Qiu, J.D., Label-free colorimetric detection of biothiols utilizing SAM and un-modified Au nanoparticles (2015) Biosens Bioelectron, 68, pp. 668-674. , COI: 1:CAS:528:DC%2BC2MXhsleqsL4%3D; Nelson, E.M., Rothberg, L.J., Kinetics and mechanism of single-stranded DNA adsorption onto citrate-stabilized gold nanoparticles in colloidal solution (2011) Langmuir, 27, pp. 1770-1777. , COI: 1:CAS:528:DC%2BC3MXjvFGksA%3D%3D; Li, Y., Pu, Q., Li, J., Zhou, L., Tao, Y., Li, Y., Xie, G., An �off-on� fluorescent switch assay for microRNA using nonenzymatic ligation-rolling circle amplification (2017) Microchim Acta, 184, pp. 4323-4330. , COI: 1:CAS:528:DC%2BC2sXhtl2hsrzJ; Zhou, Y., Li, B., Wang, M., Wang, J., Yin, H., Ai, S., Fluorometric determination of microRNA based on strand displacement amplification and rolling circle amplification (2017) Microchim Acta, 184, pp. 4359-4365. , COI: 1:CAS:528:DC%2BC2sXhsVWgsr3P; Shi, H.Y., Yang, L., Zhou, X.Y., Bai, J., Gao, J., Jia, H.X., Li, Q.G., A gold nanoparticle-based colorimetric strategy coupled to duplex-specific nuclease signal amplification for the determination of microRNA (2017) Microchim Acta, 184, pp. 525-531. , COI: 1:CAS:528:DC%2BC28XitVylsbrI; Sang, Y., Xu, Y., Xu, L., Cheng, W., Li, X., Wu, J., Ding, S., Colorimetric and visual determination of microRNA via cycling signal amplification using T7 exonuclease (2017) Microchim Acta, 184 (7), pp. 2465-2471. , COI: 1:CAS:528:DC%2BC2sXmtFOhu70%3D; Zeng, K., Li, H., Peng, Y., Gold nanoparticle enhanced surface plasmon resonance imaging of microRNA-155 using a functional nucleic acid-based amplification machine (2017) Microchim Acta, , https://doi.org/10.1007/s00604-017-2276-2; Borghei, Y.S., Hosseini, M., Ganjali, M.R., Fluorescence based turn-on strategy for determination of microRNA-155 using DNA-templated copper nanoclusters (2017) Microchim Acta, 184, pp. 2671-2677. , COI: 1:CAS:528:DC%2BC2sXmvFGjsbo%3D; Ji, X., Lv, H., Ma, M., Lv, B., Ding, C., An optical DNA logic gate based on strand displacement and magnetic separation, with response to multiple microRNAs in cancer cell lysates (2017) Microchim Acta, 184 (8), pp. 2505-2513. , COI: 1:CAS:528:DC%2BC2sXmtFOgsr0%3D; Paul, A., Avci-Adali, M., Ziemer, G., Wendel, H.P., Streptavidin-coated magnetic beads for DNA strand separation implicate a multitude of problems during cell-SELEX (2009) Oligonucleotides, 19, pp. 243-254. , COI: 1:CAS:528:DC%2BD1MXhtFCjtb3K; Svobodov�, M., Pinto, A., Nadal, P., O�Sullivan, C.K., Comparison of different methods for generation of single-stranded DNA for SELEX processes (2012) Anal Bioanal Chem, 404, pp. 835-842; Liang, C., Li, D., Zhang, G., Li, H., Shao, N., Liang, Z., Zhang, L., Zhang, G., Comparison of the methods for generating single-stranded DNA in SELEX (2015) Analyst, 140, pp. 3439-3444. , COI: 1:CAS:528:DC%2BC2MXkvVWjtro%3D
dcterms.source Scopus
dc.identifier.doi https://doi.org/10.1007/s00604-018-2767-9
dc.identifier.doi PubMedID29594755
dc.Affiliation October University for modern sciences and Arts (MSA)


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search MSAR


Advanced Search

Browse

My Account