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Abstract
Physical rehabilitation is crucial in healthcare, facilitating recovery from injuries or illnesses
and improving overall health. However, a notable global challenge stems from the shortage of
professional physiotherapists, particularly acute in somedeveloping countries,where the ratio
can be as low as one physiotherapist per 100,000 individuals. To address these challenges and
elevate patient care, the field of physical rehabilitation is progressively integrating Computer
Vision andHumanActivityRecognition (HAR) techniques.Numerous research efforts aim to
explore methodologies that assist in rehabilitation exercises and evaluate patient movements,
which is crucial as incorrect exercises can potentially worsen conditions. This study investi-
gates applying various deep-learning models for classifying exercises using the benchmark
KIMORE and UI-PRMD datasets. Employing Bi-LSTM, LSTM, CNN, and CNN-LSTM,
alongside a Random Search for architectural design and Hyper-parameter tuning, our inves-
tigation reveals the (CNN) model as the top performer. After applying cross-validation, the
technique achieves remarkable mean testing accuracy rates of 93.08% on the KIMORE
dataset and 99.7% on the UI-PRMD dataset. This marks a slight improvement of 0.75% and
0.1%, respectively, compared to previous techniques. In addition, expanding beyond exer-
cise classification, this study explores the KIMORE dataset’s utility for disease identification,
where the (CNN) model consistently demonstrates an outstanding accuracy of 89.87%, indi-
cating its promising role in both exercises and disease identification within the context of
physical rehabilitation.

Keywords Physical rehabilitation exercises · Deep learning · Hyper-parameter tuning ·
LSTM · Bi-LSTM · CNN · CNN-LSTM

1 Introduction

Physical rehabilitation exercises are crucial for individuals to recover body function and
capabilities following an injury, illness, or surgery. The exercises are critical components
of recovery programs intended to help patients regain their lost physical abilities, such as
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flexibility and strength, and to facilitate a safe return to their normal daily activities. This
research explores how computer vision and the latest deep-learning techniques can be used
to evaluate physical rehabilitation exercises. The findings will help promote healing, prevent
future injuries, and improve overall health and well-being.

The importance of physical therapy research is emphasized byglobal health trends, accord-
ing to the World Health Organization (WHO) [1]. Currently, an astounding estimate of 2.4
billion individuals worldwide require rehabilitation for their health conditions. Notably, over
50% of individuals who need essential rehabilitation services lack access to them. This
severe lack of accessibility is worsened by insufficient funding and undervaluation of reha-
bilitation services, particularly in countries with inadequate healthcare systems. Low- and
middle-income countries have less than ten skilled rehabilitation practitioners per 1 million
people, which is critically insufficient. Furthermore, with the projected doubling of the global
population by 2050, there is an urgent need to address the increasing demand for rehabilita-
tion services, particularly in developing countries where the strain on healthcare systems is
becoming more pronounced. This contextual backdrop highlights the importance of advanc-
ing physical therapy research to fill gaps and improve the effectiveness of rehabilitation
services globally.

The integration of digital technologies and Artificial Intelligence (AI) into home-based
rehabilitation, particularly via exercise classification, showcases its groundbreaking potential.
The application of auxiliary systems and AI is critical for tailoring exercises and monitoring
progress in shoulder rehabilitation treatments [2, 3]. The incorporation of physical activity
into rehabilitation routines, as Loellgen et al. [4] proposed, emphasizes the critical role of
structured exercises in improving recovery outcomes.

Furthermore, innovative strategies like motor imagery and action observation [5], cou-
pled with the introduction of digital tools in orthopedic recovery [6], and the adoption of
virtual reality and digital biofeedback systems for post-operative rehabilitation [7, 8], collec-
tively signal a move towards more personalized and accessible rehabilitation options. These
advancements not only confirm the utility of exercise classification in home-based rehabilita-
tion systems but also underscore a transition towards solutions that prioritize patient-centric
care, efficiency, and accessibility. Additionally, these technological advancements align with
the SustainableDevelopmentGoals (SDGs), particularly SDG3,which seeks to ensure health
and well-being for all at every age. This approach not only improves patient outcomes but
also aligns with the World Health Organization’s (WHO) goals for universal health coverage
by enhancing the accessibility and efficiency of rehabilitation services.

Recently, there has been a growing emphasis on Human Activity Recognition (HAR)
research, particularly within physical rehabilitation. For instance, in [9], the authors present
a comprehensive review of Indoor-HAR, an emerging technology leveraging cameras and
vision-based sensors to assess human actionswithin indoor settings. The review encompasses
contemporary approaches, existing challenges, practical implementations, dataset resources,
and a proposed taxonomy for Indoor-HAR. The study also highlights the potential of this
technology in various industries, such as healthcare, surveillance, and human-computer inter-
action. It has multiple applications in smart homes, elderly care, and assisted living. Debnath
et al., [10] investigated different computer vision approaches for physical rehabilitation and
assessment. This has facilitated the creation of novel procedures that aid in the monitoring
and evaluation of physical rehabilitation exercises, providing benefits to patients receiving
rehabilitation for injuries or disabilities. Recent advancements in deep learning algorithms
have enhanced the accuracy and efficiency of HAR systems. The current and prospective
applications of Artificial Intelligence (AI) in physiotherapy and rehabilitation for advancing
medical digitization are explored in [11]. On the other hand, [12] examines the application of
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a subset of machine learning approaches, namely, Reinforcement Learning. Virtual Reality
(VR) approaches are also applied in this domain for physiotherapists and physicians [13]. VR
approaches construct an intelligent space using multi-camera systems to capture gait data,
thus creating a 3D virtual environment. Several studies in this discipline are skeleton-based
[14] or pose-guided [15].

This study focuses on Pose-guided Activity Recognition, which involves the analysis of
human body poses to understand and classify various activities, uncovering their potential
benefits for patients and healthcare providers. In the accompanying image as shown in Fig. 1
where circles depict body joints, and lines represent intra-body edges, capturing the natural
connections in the human body. This visual representation, reminiscent of Kinect pose frames
over time, illustrates the temporal sequence of human poses. The duplication of these poses
in each frame allows for recognizing and analyzing activities based on the moving body
positions. This approach is a crucial aspect of the broader field of human activity recognition.

Popular deep learning algorithms have been utilized for Human Activity Recognition
(HAR). Numerous researches utilized Long Short-TermMemory (LSTM) for Human Activ-
ity Recognition [16–19]. Bidirectional LSTM (BiLSTM) has been used before for Human
Activity Recognition and produced solid performance and acceptable results [20–22]. Sig-
nificant contributions to the field of Human Activity Recognition leveraging Convolutional
Neural Network (CNN) architectures can be found in the research of [23–25], where the
utilization of (CNN) models exhibited remarkable efficacy in the precise identification and
classification of human activities.Wang et al., [26], andYadav et al., [27], have applied (CNN-
LSTM) for Human Activity Recognition and proved its superiority. Various deep learning

Fig. 1 Skeleton-based activity
recognition demonstrates circles
representing body joints and lines
defining intra-body edges based
on natural connections in human
bodies. The duplication of human
poses replicates the time
sequences across frames captured
over time
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techniques, such as transfer learning, were utilized. Transfer Learning is a machine learn-
ing technique where knowledge or insights acquired from one dataset or task are applied
to another closely related dataset or task. This technique entails fine-tuning a pre-trained
model on a new dataset or task, frequently used when the new task or dataset has limited data
or computational resources, making it difficult to train a new model from scratch. Numer-
ous researchers have applied transfer learning in human activity recognition, particularly
rehabilitation exercises [14, 15, 28].

Additionally, transform learning, a feature extraction or dimensionality reduction tech-
nique that involves converting high-dimensional data into a lower-dimensional space, has
been used in this domain. Transformers models are useful for decreasing the computational
complexity of working with high-dimensional data and extracting significant features that
can be used for a specific job. For example, Réby et al. applied Transform Learning in this
domain using the Graph Transformer approach [29].

Real-time healthcare applications pose a significant challenge due to their demand for
substantial computational resources, a concern that has garnered increased attention in recent
healthcare application research. Various studies have endeavored to address this challenge
by achieving a 55% reduction in delay, a 72% improvement in response time, and a 70%
reduction in energy consumption [30].

Our proposed model offers the potential for seamless deployment within a mobile appli-
cation, empowering patients to engage in rehabilitative exercises within the comfort of their
homes, utilizing a Kinect camera to capture and feed relevant data to the model. The models
determine the accuracy of the exercise execution, a pivotal aspect for expediting the recovery
process. This at-home exercise monitoring circumvents the necessity for physical visits to
physiotherapy clinics. This paradigm has gained heightened significance during the ongo-
ing global pandemic, where restrictions on outdoor activities are prevalent. This prioritizes
patient safety and alleviates the strain on physiotherapists, a profession already grappling
with a global shortage of practitioners.

Video-based techniques for feature extraction are resource-intensive [31–33], while man-
ual feature extraction from videos for 2D image conversion is less demanding but often less
robust [34]. Ourmethodologymodifies the 1D approach from [35], integrating a novel feature
extraction method that balances performance with resource efficiency. This hybrid strategy
is particularly cost-effective for at-home rehabilitation, enabling deployment on low-power
devices like mobile apps for real-time patient feedback.

The main contributions of this paper are :

1. Feature Engineering: The study introduces a novel approach to represent exercises as
1D vectors through comprehensive feature engineering, employing various statistical
techniques.

2. Comparative Study: A detailed comparative analysis is conducted, assessing the per-
formance of four distinct models (LSTM, Bi-LSTM, CNN, and CNN-LSTM) across
two diverse datasets. This comparative study provides insights into the strengths and
weaknesses of each model in the context of exercise classification.

3. DiseaseClassification:Themodels developed in the study are further utilized for disease
classification based on five specific exercises from theKIMORE dataset. This application
demonstrates the proposed models’ versatility and potential clinical relevance beyond
exercise classification.

This manuscript is structured into eight sections: Introduction, Related Work, Dataset,
Methodology, Experiments, Results, Discussion, Conclusion and Future Work.
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2 Literature review

This section is organized into four subsections: Deep Learning-Based, Ensemble-Based,
Transformer-Based, and Transfer-Based Approaches. Following the approach taken by
Akkem et al., [36], a comparative analysis of specific methods within these approaches
has been conducted. Table 1 provides a comprehensive overview of various models applied
in HAR along with their associated evaluation metrics, results, datasets, and identified lim-
itations. One research gap evident from the table is the common challenge of real-time
applicability, particularly in resource-constrained environments. Several models, such as
Graph Convolutional Siamese Network [37], Ensemble CNN-RNN [38], Ensemble-based
Graph Convolutional Network [39], and Graph Attention Network [40], exhibit high compu-
tational costs, potentially limiting their suitability for real-time deployment on devices with
constrained resources. Additionally, some models, including CNN-LSTM [34], LSTM-1D
CNN [35], 3D CNN [41], and VGG-16 [28], highlight the need for further optimization to
improve accuracy, indicating an avenue for future research in model refinement.

The state-of-the-art models in human activity recognition and physical rehabilitation, such
asCNN-LSTM,GraphConvolutional SiameseNetworks, LSTM-1DCNN, 3DCNN,Ensem-
ble CNN-RNN, Ensemble-based Graph Convolutional Network, Graph Attention Network,
and VGG-16, demonstrate significant advancements in accuracy and performance across
various datasets. However, they also reveal critical limitations concerning generalizability,
computational efficiency, and scalability. These challenges highlight the ongoing need for
optimization to balancemodel complexitywith practical applicability, ensuring that advanced
deep learning models can be deployed effectively in real-world settings without being hin-
dered by computational constraints or loss of relevant information due to preprocessing
choices.

Another noteworthy research gap involves transforming time-series data into 2D images
or RGB formats, as Boukhennoufa et al., [28] proposed. This process introduces feature
engineering choices thatmay encode biases or lead to information loss, impacting themodel’s
generalizability. Additionally, it is observed that several studies lack experimentation on
multiple datasets, limiting the generalizability of their findings. Addressing these gaps can
contribute to developing more efficient and accurate HAR models with improved real-time
capabilities and enhanced generalizability.

Our methodology aims to mitigate the constraints outlined in the preceding Table 1. The
refinement ofmodel architectureswas executed through a random search process, prioritizing
attaining accuracy to ensure broad generalization. Extensive testing across multiple datasets
incorporated a robust 5-fold cross-validation strategy to validate the models’ performance.
Leveraging deep learning models was instrumental in addressing the inference time chal-
lenges associated with attention-based and ensemble models. We opted for a 1D approach
over 2D, strategically sidestepping the complexities associated with image representation
choices and the intricate nature of 2D models.

2.1 Deep learning-based approaches

Kumar et al., [38] introduced an innovative Deep-HAR model, Fusing Convolutional Neural
Networks (CNNs) to extract features and Recurrent Neural Networks (RNNs) to capture tem-
poral patterns within sequential data. Their evaluation encompassed three publicly accessible
datasets (WISDM [44], PAMAP2 [45], and KU-HAR [46]), revealing exceptional perfor-
mance across all activity types. Notably, the model achieved remarkable accuracy rates,
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scoring 99.98% for simple activities, 99.64% for complex activities, and 99.98% for hetero-
geneous activities. Similarly, our study employs various (CNN) and RNN models to address
a specific healthcare concern, focusing on rehabilitation, and evaluates their efficacy on two
dedicated rehabilitation datasets.

Tasmin et al., [48] focused on complex and diverse human activities rather than simple
activities like walking or sitting. Using skeletal data, they introduced aDynamic EdgeConvo-
lutional Neural Network (DECNN). DECNNoperates on a graph representation of skeletons,
treating joints as nodes and modeling their connections as edges. The authors evaluated their
approach on UTD-MHAD [49] and MSR-Action3D [50], achieving high accuracy.

The integrationof aCNN-LSTMhybridmodel is a prevalent approach in both humanactiv-
ity recognition [26, 27, 34, 51–53], and disease classification [54]. Lakhan et al. employed
a CNN-LSTM architecture in proposing a framework for detecting Autism Spectrum Dis-
order. Liao et al., [34] also introduced a deep learning architecture that combines CNN and
LSTM networks to evaluate physical rehabilitation exercises. Their framework proficiently
classifies exercises in the UI-PRMD dataset, demonstrating practicality with low absolute
deviation per exercise.

2.2 Ensemble-based approaches

Ensemble learning, as investigated by Zhang et al. [55] extensively, combines data fusion,
modeling, and mining into a unified framework. Effective ensemble methods carefully
combine members to enhance performance, avoiding random fusion issues. These meth-
ods are categorized (in classification tasks) into data-level, feature-level, decision-level, and
model-level approaches. Chenguang et al., [56] utilize ensemble learning for hand function
assessment, while Chihiro et al., [57] apply it for predicting functional outcomes after spinal
cord injury. Additionally, Wenchuan et al., [58] leverage ensemble learning for personalized
remote training in Parkinson’s disease patients. In the realm of skeleton-based rehabilita-
tion exercises, EGCN, an ensemble-based framework by Yu et al., [39], demonstrates robust
performance on both UI-PRMD and KIMORE datasets.

2.3 Transformer-based approaches

In this paper [59], the authors present a new Spatial-Temporal Graph Convolutional Net-
works (ST-GCN) model for dynamic skeletons. ST-GCN is designed to autonomously learn
spatial and temporal patterns from skeleton data to enhance human action recognition. The
authors employ graph convolutional networks (GCNs) with spatial and temporal convolution
operations to achieve this. These operations capture the dynamic aspects of human body
skeletons, represented as spatial and temporal graphs. These graphs are constructed based on
the inherent connections between human body parts and the temporal progression of skeleton
sequences. Furthermore, the authors introduce a partitioning strategy to segment the spatial
graph into distinct components, aligning with different body parts’ physical significance
and functions. The effectiveness of the proposed approach is extensively evaluated on two
large datasets, Kinetics and NTU-RGBD, resulting in state-of-the-art performance. Notably,
the method achieves an accuracy of 81.5% on NTU-RGBD (CV) and 30.7% on Kinetics-
Skeleton. The authors conclude that this approach can be readily extended to other tasks
involving skeleton data, including gesture recognition, pose estimation, and human-object
interaction.
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Rahevar et al. proposed a Spatial-Temporal Dynamic Graph Attention Network (ST-
DGAT) [40], which presents a groundbreaking approach to extracting valuable features
from human body skeleton data. In contrast to previous methods like Graph Convolutional
Networks (GCN) and Graph Attention Networks (GAT), which struggled with capturing
long-range joint dependencies, (ST-DGAT) introduces dynamic graph attention. By reorder-
ing the weighted vector operations in (GAT), (ST-DGAT) significantly enhances the attention
mechanism, allowing it to learn spatial-temporal patterns from skeleton sequences effectively.
The model outperforms existing approaches and achieves state-of-the-art accuracy on large-
scale datasets, including NTU60, NTU120, and Kinetics-400, with accuracy levels of 96.4%,
88.2%, and 61.0%, respectively.

Reby et al., [29] proposed a graph transformer model for assessing the effectiveness of
physical rehabilitation on the UI-PRMD dataset [42]. Their model combines self-attention
mechanisms with spatiotemporal graph networks, achieving state-of-the-art binary classifi-
cation and quality score prediction results. It is essential to emphasize that these outcomes are
specific to a singular dataset, and there is a possibility that the performance of the (G2PRE)
model may differ on other datasets.

Peng et al., [14] proposed a personalized rehabilitation training recognition framework
using transfer learning based on human skeleton data. It employs pre-trained (CNN) models
for feature extraction and hierarchical classification for exercise recognition. The approach
achieved significant accuracy improvements for personalized rehabilitation training.

Generally, Transformers are capable of modeling long-range dependencies in sequential
data. However, it requires significant computational costs due to self-attention mechanisms.
This can hinder their real-time applicability on resource-constrained devices often used for
(HAR). (CNNs), in contrast, offer efficient spatial feature extraction, making them well-
suited for HAR tasks with fixed-size sensor inputs. However, their limitations in handling
long temporal dependencies might necessitate careful design and segmentation strategies.
(RNNs), specifically (LSTMs), provide a balance between sequential modeling and compu-
tational efficiency, but their performance can still be impacted by sequence length and model
complexity.

2.4 Transfer-based approaches

Boukhennoufa et al., [28] introduced an innovative strategy to enhance activity recognition
accuracy in post-stroke rehabilitation assessments, incorporating the Geometric Mean of
Absolute and Relative Frequencies (GMAF) [60]. The proposed methodology encompasses
two primary phases: feature extraction and classification. GMAF is applied to extract features
from raw accelerometer data in the feature extraction stage. Subsequently, the classification
phase involves experimenting with three different approaches: 1D CNN, 2D CNN, and a
transfer learning approach using VGG-16 [61]. Implementing a basic 1D (CNN) classifier
on these images elevates the accuracy of test data from 94% using traditional segmentation
to 97.06%. Additionally, the transformation of 2D images into RGB format, coupled with
using a 2D (CNN) classifier, results in a noteworthy accuracy increase to 97.52%.

However, certain limitations accompany this approach. It demands additional prepos-
sessing to convert data into images. Although the 1D (CNN) achieves satisfactory results,
it significantly requires fewer computational resources than VGG models. Using transfer
learning with pre-trained models, such as (VGG16), designed for different tasks, like image
recognition, may not fully capture the specific features and dynamics of post-stroke activity
data. This potential domain mismatch could limit the benefits derived from transfer learning.
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In summary, the choice of deep learning architecture for HAR necessitates a delicate
balance between performance and computational constraints. Transformers, adept at captur-
ing long-range dependencies in sequential data, come with significant computational costs
attributed to self-attentionmechanisms. Requiring significant computational can impede their
real-time applicability on resource-constrained devices commonly utilized for HAR. On the
other hand, CNNs excel in efficient spatial feature extraction, rendering them suitable for
HAR taskswith fixed-size sensor inputs. However, their limitations in handling long temporal
dependenciesmay requiremeticulous design and segmentation strategies. RNNs, particularly
LSTMs, balance sequential modeling and computational efficiency, but their performance
may still be influenced by sequence length and model complexity. Ensemble models, while
offering a potential solution to prior challenges, come at the expense of increased infer-
ence time as at least two models are run for the same classification task. Transfer Learning,
althoughpromising, can face obstacles due to domain dissimilarity, necessitating task-specific
fine-tuning. In conclusion, the optimal HAR architecture selection demands a comprehensive
understanding of the trade-offs between accuracy, computational resources, and the temporal
characteristics of sensor data.

3 Datasets characteristics

This study employs two separate datasets to validate our action recognition methodology.
The first dataset, known as the UI-PRMD dataset [42], and the second dataset, referred to as
the KIMORE dataset [43].

3.1 UI-PRMD

The UI-PRMD dataset, introduced by Vakanski et al. in their research [42], represents a
comprehensive resource dedicated to a physical rehabilitation experiment. Ten healthy indi-
viduals participated, performing ten rehabilitation exercises with ten repetitions, each with
correct and wrong techniques for each exercise, resulting in 20 classes and 2000 records.
Two motion-capturing systems, a Vicon optical tracker and a Kinect camera, were utilized
throughout the study. Including both techniques enhances the dataset’s utility for training
and evaluating models tailored to physical rehabilitation. Providing insights into the correct
form and identifying common errors, the UI-PRMD dataset is crucial in advancing research
in human activity recognition and rehabilitation analysis. Within this paper, the classification
of correct and erroneous techniques holds paramount importance, aligning with the primary
objective of facilitating accurate assessments during at-home exercises.

The investigation specifically targeted ten distinct exercises: Deep Squat, Side Lunge,
Standing Shoulder Abduction, Hurdle Step, Standing Shoulder Scaption, Standing Shoul-
der Extension, Inline Lunge, Sit Stand, Standing Active Straight Leg Raise, and Standing
Shoulder Internal-External Rotation. Notably, each exercise was executed with correct and
incorrect techniques, providing a nuanced dataset for analysis. The complete listing of the
ten exercise classes can be found in Table 2.

TheUI-PRMDdataset records data in theYXZcoordinate system,whereYdenotes height,
X represents width, and Z indicates depth. Various body parts, including Chest, Waist, Head,
Left Collar, Right Collar, Left Upper Arm, Right Upper Arm, Left Forearm, Right Forearm,
Head tip, Neck, Left Upper Leg, Right Upper Leg, Left Hand, Right Hand, Left Foot, Right
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Table 2 Compilation of exercises and corresponding labels in the UI-PRMD Dataset

Label Exercise Name Label Exercise Name

Ex 1 Deep Squat Ex 6 Standing Leg Raise

Ex 2 Hurdle Step Ex 7 Shoulder Abduction

Ex 3 Inline Lunge Ex 8 Shoulder Extension

Ex 4 Side Lunge Ex 9 Shoulder Internal-External Rotation

Ex 5 Sit to Stand Ex 10 Shoulder Scaption

Foot, Spine, Left Leg Toes, and Right Leg Toes, were utilized to extract joint information
and corresponding angles from the sensor data.

3.2 KIMORE

Marianna Capecci et al., [43] conducted a study titled "Kinematic Analysis of Movements
and Clinical Assessments for Remote Supervision of Physical Rehabilitation (KIMORE)"
at the University of Pisa, Italy. Employing RGB-D sensors, specifically the Kinect v2, the
study recorded RGB and depth videos and skeletal joint positions during five targeted exer-
cises addressing lower back pain. Data collection occurred in a controlled environment using
Kinect cameras, incorporating a diverse set of participants, including both healthy individ-
uals and patients with various motor dysfunctions. This diversity is critical for developing
algorithms with robust generalization capabilities across different clinical populations. The
dataset comprises 78 participants, including 44 individuals without identified health issues,
consisting of 17 Expert Professionals and 27 Not Experts. Additionally, there are 34 par-
ticipants with motor dysfunctions, representing common neurological and musculoskeletal
conditions such as stroke, Parkinson’s disease, or low back pain. This diverse representation
ensures the dataset’s applicability to various rehabilitation settings.

The primary purpose of the dataset is exercise classification, with an additional experiment
demonstrating the feasibility of disease classification. The five exercises in the dataset are
listed in Table 3.

Similarly to Reby et al., [29], we prioritize skeleton-based methods because of their
resilience to variations in body scales,motion speeds, camera perspectives, and environmental
interference compared to RGB image-based methods. In line with this preference. In this
study, we primarily employ the Kinect-extracted data, which performs better than directly
extracting data from individual joints, as evidenced by previous research [35]. Furthermore,
the dataset includes a set of meticulously defined features for each exercise, which medical
experts established to characterize the scopeof each exercise.These features, validated against

Table 3 Compilation of exercises
and corresponding labels in the
KIMORE Dataset

Label Exercise Name

Ex 1 Lifting of arms

Ex 2 Lateral tilt of the trunk with the arms in extension

Ex 3 Trunk rotation

Ex 4 Pelvis rotations on the transverse plane

Ex 5 Squatting
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a stereophotogrammetric system, can be analyzed to compute a performance score for each
participant. The dataset is structured into three sub-folders: Raw data, Script, and Label. The
participant cohort is further categorized into two main macro-groups: the Pain and Posture
disorders Group (GPP) and the Control Group (CG). Within the CG, there is a subdivision
into two subgroups, namely CG with expertise in physiotherapy exercises (CG-E) and CG
without such expertise (CG-NE). Similarly, the GPP is divided into three sub-groups based
on specific diagnoses, namely Parkinson’s disease, Stroke, and Low Back Pain. The dataset
was employed for exercise classification, and an additional experiment was undertaken to
showcase the feasibility of disease classification.

4 Methodology

Figure 2 illustrates a system overview, capturing the entire workflow from data acquisition to
deployment. The diagram provides a detailed depiction of key stages, including preprocess-
ing, Hyper-parameter tuning, model training, diverse metric-based evaluation, visualization
of results, and model deployment. Each of these stages will be intricately expounded upon
in their corresponding sections. Section 4.1 delves into the intricacies of data acquisition
and alternative sensors, while section 4.2 illuminates the data preparation and preprocessing
phase. In section 4.3, we delve into the details of adjusting Hyper-parameter tuning, and the
employed classification models are detailed in section 4.4. Section 4.5 explains the different
deployment choices that have been considered.

4.1 Data input

The patient initiates the exercise in front of the sensor device, whether a Kinect or a conven-
tional RGB camera. Our investigation primarily focuses on skeletal data acquired through
Kinect camera technology; however, our model demonstrates versatility by not relying exclu-
sively on Kinect. An RGB camera can also be employed because our models are constructed
utilizing joint coordinates. Nevertheless, additional processing is essential to extract skeletal
joints. Two viable approaches for using RGB cameras as a primary sensor are OpenPose [62]

Fig. 2 Overview of the Methodology
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and BlazePose [63]. OpenPose and BlazePose are widely adopted solutions for extracting
skeletal joints from the human body. BlazePose offers a significantly faster runtime than
OpenPose[64], making it suitable for diverse applications such as movement pre-screening
and activity classification.BlazePose, functioning as a lightweight and efficient (CNN)model,
excels in real-time pose estimation by predicting the 3D pose of an individual from a single
image or video frame. The model employs CNNs to extract features from input images,
followed by regression layers to predict the location of body key points. On the other hand,
MediaPipe [65], a framework based on the BlazePose model, is better suited for constructing
real-time machine-learning pipelines.

Despite both MediaPipe and Kinect providing joint coordinates in three dimensions
(XYZ), there exists a disparity in the number of joints. MediaPipe extracts 33 joints, while
the Kinect’s joint count varies depending on the version. For instance, the UI-PRMD dataset
utilizes a Kinect, resulting in 22 joints, whereas KIMORE employs a Kinect-v2, yielding 25
joints. Consequently, slight modifications in the input shape are necessary depending on the
specific sensor utilized. Subsequently, these joint data are forwarded to the next phase for
preprocessing. Figure 2 visualizes the data acquisition phase.

4.2 Data preparation & preprocessing

Data processing played a vital role in this phase. Each dataset’s unique structure necessi-
tated different preparatory procedures due to variations in format, features (especially the
number of joints), and data volume between the two sets. Nevertheless, uniform prepro-
cessing techniques were applied to ensure unbiased comparisons across all algorithms. The
pre-processing phase is visualized in Fig. 2.

In the case of the UI-PRMD dataset, the Kinect Camera records the data of 22 body joints,
storing this information in a vector denoted as V . At each time instance t , the representation
of each joint data Jn consists of three-dimensional coordinates: Xt , Yt , and Zt . Feature
extraction techniques are then applied to process each joint data. These techniques include
mean, median, minimum, maximum, and standard deviation. Applying these methods results
in extracting 330 features (22 body joints x 3 Coordinates x 5 statistical techniques for each
joint coordinate).

For the KIMORE dataset, the original dataset comprises XYZ coordinates for 25 dis-
tinct body joints, accompanied by a confidence score. This score quantifies the degree of
confidence in the 3D joint position as recorded by the Kinect sensor, with values ranging
from 1 (indicating a high level of confidence) to 0 (indicating a low level of confidence).
Consequently, the dataset incorporates a total of 100 features. Salwa et al., [66] surveyed the
most common feature extraction techniques used in human activity recognition. Instead of
using only one method for feature extraction, various statistical techniques were employed,
encompassing measures such as mean, median, minimum, maximum, and standard devia-
tion, applied to each of the 100 features. This process resulted in an expanded total of 500
features [25 body joints x 4 (3 Coordinates + 1 confidence score ) x 5 statistical techniques for
each joint coordinate]. It is noteworthy that, unlike the UI-PRMD dataset, it does not exhibit
a balanced class distribution. Nevertheless, the disparities between class distributions are
marginal, making implementing oversampling or down-sampling techniques unnecessary in
the context of exercise classification experiments. The feature vector (V ) is formulated in
Equation 1; here, the variable n represents the number of body joints, with a value of 25 for
the KIMORE dataset and 22 for the UI-PRMD dataset. In this context, i denotes the joint
index, y corresponds to vertical, x signifies horizontal, and Z represents depth. It’s worth

123



Multimedia Tools and Applications

noting that, for the KIMORE dataset, an additional value was incorporated as a confidence
score.

n∑

i=1

(
median( jix ) +median( jiy ) +median( jiz )

)

+
n∑

i=1

(
mean( jix ) +mean( jiy ) +mean( jiz )

)

Feature Vector (V ) = +
n∑

i=1

(
max( jix ) +max( jiy ) +max( jiz )

)

+
n∑

i=1

(
min( jix ) +min( jiy ) +min( jiz )

)

+
n∑

i=1

(
std( jix ) + std( jiy ) + std( jiz )

)
(1)

For the disease classification experiment (the experiment’s objectives and constraints are
discussed in Section 5.2), we employed diseases as class labels instead of utilizing the five
exercises as class labels. We combined the ’Expert’ and ’Not Expert’ classes into one class,
’Normal,’ representing healthy individuals. The remaining classes include Parkinson’s dis-
ease, Stroke, and Back Pain. It’s worth noting that the dataset (for disease classification)
exhibited a significant class imbalance, with notable variations in sample sizes among dif-
ferent classes. To address this imbalance and enhance the data distribution, we employed the
Synthetic Minority Over-sampling technique (SMOTE) [67]. SMOTE is a machine learning
data augmentation method specifically designed to mitigate challenges associated with class
imbalance.

The core principle of SMOTE involves generating synthetic instances within the minority
class by interpolating between existing data points. This augmentation technique effectively
counteracts skewed class distributions, improvingmodel performance, especially in scenarios
characterized by substantial class imbalances. A visual representation of the class distribution
before and after applying SMOTE can be seen in Fig. 3.

Subsequently, all features underwent normalization, andOne-HotEncodingwas employed
to encode the labels of both datasets. Finally, a reshaping process was implemented for train-

Fig. 3 Distribution of the five disease records in the KIMORE dataset before and after applying SMOTE
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ing and testing data subsets to ensure their formats conform to the consistent data structure
required by all utilized models. One-Hot Encoding is a common approach for multi-class
datasets [68–71].

4.3 Hyper-parameters tuning

Deep learning poses a significant challenge in terms of model optimization. Despite the
widespread success of deep networks across various domains, certain factors can hinder their
overall effectiveness. These factors encompass the selection of appropriatemodel parameters,
determining the architecture and feature representation, and identifying optimal weight and
bias values [72]. In this research, we harnessed the capabilities of four deep learning algo-
rithms, specifically LSTM, BiLSTM, CNN-LSTM, and CNN. Our central concern was the
identification of themost suitableHyper-parameters for thesemodels. Our effort went beyond
finding these four models best architecture and parameters. It encompassed the pursuit of
Hyper-parameters capable of consistently delivering exceptional results across both datasets.
The manual exploration of diverse configurations and subsequent evaluation to ascertain the
optimal parameter settings is an onerous and time-consuming endeavor, especially when
dealing with high-dimensional search spaces. Furthermore, it is crucial to recognize that
finely tuned Hyper-parameter configurations, established by an experienced user, are intri-
cately tied to the specific application. Consequently, a compelling need exists for automated
Hyper-parameter optimization to alleviate computational demands and minimize user inter-
vention. Utilizing the steepest gradient descent algorithm for optimizing Hyper-parameter
configurations proves unsuitable [72]. Instead, prominent techniques such as Grid Search
and Random Search have emerged to address this challenge effectively. Grid search is a
brute-force approach to Hyper-parameter tuning. It evaluates all possible combinations of
Hyper-parameter values [73], whereas Random Search adopts a more stochastic approach by
exploring random subsets of Hyper-parameter combinations [74]. The choice between Grid
Search and Random Search hinges significantly on the number of Hyper-parameters under
consideration. Grid Search proves more convenient when the Hyper-parameter count is lim-
ited, whereas Random Search excels when dealing with a larger number of Hyper-parameters
[74]. In our approach, we have adapted Random Search to configure the models architec-
tures and determine the most favorable Hyper-parameters that consistently yield superior
results across both datasets. Figure 2 [Model Tuning] Visualizes the architecture designing
and Hyper-parameters-tuning phase.

The Random Search technique, as discussed in [74], was employed to select the model
architecture and fine-tune Hyper-parameters across four distinct models. Due to computa-
tional resource limitations, 150 trials were conducted for all models. The primary objective
of this endeavor was to optimize validation loss during the training process. The dataset was
partitioned to achieve this, with 80% of the data allocated for training and validation pur-
poses. Hyper-parameter tuning was performed on one dataset, and subsequently, the model
was tested on another dataset. We explored four distinct combinations: (1) Tuning on the
KIMORE dataset and training on the UI-PRMD dataset. (2) Tuning on the UI-PRMD dataset
and training on the KIMORE dataset. (3) Initial tuning on the KIMORE dataset followed by
a subsequent round of Hyper-parameter optimization on the UI-PRMD dataset. (4) Initial
tuning on the UI-PRMD dataset followed by a subsequent round of Hyper-parameter opti-
mization on the KIMORE dataset. Our findings led us to determine that the most favorable
results were obtained through the second combination, where the model was tuned on the
UI-PRMD dataset and subsequently tested on the KIMORE dataset. This section compre-
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hensively explains the parameter values considered for investigation for each model. For
the (LSTM) model, The Random Search Tuner was employed to ascertain the values for
several critical variables to establish the most effective model architecture. These variables
encompassed the following: the number of (LSTM) layers, number of (LSTM) units, dropout
rate, learning rate (ranging from 0.0001 to 0.01), type of regularizer (l1, l2, or none), and its
associated strength [75]. The regularization strength parameter, often denoted as lambda (λ),
controls the amount of regularization applied to the model. A higher value of λ corresponds
to more robust regularization, which penalizes larger weights more heavily, leading to a more
sparse model. Conversely, a lower value of λ reduces the regularization effect, allowing the
model to have larger weights.

A comprehensive set of Hyper-parameters was considered in the context of the (CNN-
LSTM) model. These parameters encompassed several key aspects, including the count of
convolutional filters, the kernel size, the quantity of (LSTM) units, the dropout rate, the
learning rate, and the choice of regularization techniques. These techniques are applied to
convolutional, dense, and (LSTM) layers, providing flexibility with options such as l1, l2, or
none.

Similarly, for the (BiLSTM) model, an array of Hyper-parameters came into play. These
parameters involved factors like the number of Bidirectional LSTM layers, the quantity
of (LSTM) units, the dropout rate, the learning rate, and the selection of regularization
techniques. Among the choices for regularization were options like l1, l2, or none.

Shifting the focus to the (CNN)model, theHyper-parameters under consideration included
the count of convolutional layers, the number of dense layers, convolutional units, dense units,
the dropout rate, the application of regularization techniques to both convolutional and dense
layers (with choices of l1, l2, or none), and the learning rate. These parameters were pivotal
in shaping the model’s architecture and behavior during training and evaluation.

4.4 Action classification

LSTM variants stand out in action classification owing to their robust memory retention
capabilities, facilitating the effective capture and interpretation of temporal dependencies
within sequential data-an essential aspect of action classification tasks. This advantage
is well-established in natural language processing and time-series analysis, where LSTM
architectures consistently outperform conventional models in processing sequential infor-
mation. The study encompasses three investigated LSTM variants: LSTM, Bidirectional
LSTM (BiLSTM), and Convolutional Neural Network - LSTM (CNN LSTM). All models
process input data, comprising a 500-dimensional feature vector for the KIMORE dataset
and a 330-dimensional feature vector for the UI-PRMD dataset. The output layer includes
20 classes for the UI-PRMD dataset and five classes for the KIMORE dataset, with these
model selections being motivated by previous research studies that showcase the widespread
adaptation of LSTM networks in various domains, such as human activity recognition [16–
18], chronic pain detection [19], and exercise classification [76, 77]. Similarly, Bidirectional
LSTM (BiLSTM) has found extensive application in studies related to human activity recog-
nition [20–22], exercise classification [78, 79], and other relevant domains. Convolutional
Neural Networks (CNN) have demonstrated remarkable results in human activity recognition
[23–25] and exercise classification [80–84]. The hybrid CNN-LSTM model has also been
utilized in both human activity recognition [26, 27, 51] and physical rehabilitation domains
[34, 52, 53].

characteristics
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4.4.1 Long short-termmemory (LSTM)

Long Short-Term Memory (LSTM) [85] networks have emerged as a prominent and effi-
cacious class of recurrent neural networks (RNNs) that can effectively model and process
sequential data. In contrast to conventional RNNs, LSTMs possess the distinctive ability to
mitigate the vanishing gradient problem through a complex gating mechanism, which facil-
itates the preservation of long-range dependencies. This is achieved by regulating the flow
of information through a network of memory cells, each equipped with input, output, and
forget gates. The (LSTM) architecture’s adaptive gating mechanism enables it to capture and
retain essential information over extended sequences, making it particularly well-suited for
tasks involving temporal dynamics and sequential patterns. Moreover, the introduction of
variants such as Bidirectional LSTM (BiLSTM) and Convolutional Neural Network - LSTM
(CNN LSTM) has further extended the (LSTM) framework’s capabilities, allowing for the
exploitation of bidirectional context and spatial features, respectively.

The Hyper-parameter tuning process determined that the model parameters and architec-
ture comprise a single (LSTM) layerwith 320 units.A learning rate of 0.000501was identified
as the most effective value for the learning process. To mitigate the problem of over-fitting,
we introduced a dropout rate of 0.263337 and implemented an L2 regularizer. Dropout layers
were specifically employed to counteract over-fitting, which, although potentially increasing
training time, significantly contributes to enhancing the model’s generalization capability.
Moreover, batch normalization can achieve model generalization, although dropout offers
finer control over regularization strength [86]. Two dense layers further complemented this
architecture, each comprising 940 units. Finally, the output layer utilized Softmax [87] acti-
vation due to its superiority over other activation functions.

Figure 4 visually illustrates the proposed model’s architecture, which was arrived at
through a comprehensive exploration of various (LSTM) configurations and fine-tuning
numerous model parameters via random search.

4.4.2 Bidirectional Long Short-TermMemory (BiLSTMs)

BiLSTMs, short for Bidirectional Long Short-Term Memory networks, introduce bidirec-
tional processing by integrating two distinct (LSTM) layers that analyze input sequences in
both forward and reverse directions [88]. This unique design allows the network to capture
past and future context concurrently, significantly enhancing its ability to discern intricate
temporal relationships within sequential data. Integrating information from both directions
makes BiLSTMs exceptionally proficient in tasks demanding a profound understanding of
context, such as natural language comprehension and sentiment analysis. This bidirectional
processing effectively mitigates the limitations associated with unidirectional RNNs, which
often struggle with capturing long-range dependencies and mitigating the vanishing gradient
problem. Consequently, BiLSTMs exhibit superior performance on tasks requiring nuanced
sequential information processing.

Following Hyper-parameter tuning, the parameters and architecture were determined to
consist of two (BiLSTM) layers, each comprising 271 units. Additionally, a learning rate
of 0.001014 was identified as the value for the learning process. A dropout rate of 0.3 was
used to mitigate the over-fitting problem further. The model also incorporated four dense
layers, each containing 927 units with ReLU activation, except for the output layer, which
utilized softmax activation. The architectural layout presented in Fig. 5 was devised after
evaluating various (BiLSTM) implementations and fine-tuning multiple parameters using a
random search approach.
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Fig. 4 The architecture of
(LSTM) Model after applying
Random Search for Hyper-tuning

4.4.3 Convolutional Neural Networks (CNN)

Convolutional Neural Networks (CNN), initially pioneered by Yann LeCun et al., [89], rep-
resent a groundbreaking innovation in deep learning and computer vision. Designed initially
for image recognition tasks, (CNNs) are inspired by the hierarchical feature extraction mech-
anisms of the human visual system, replicating the autonomous process through which the
human brain distills relevant features from input data. Comprising convolutional layers for
feature extraction followed by pooling layers for spatial dimension reduction, CNNs exhibit
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Fig. 5 The architecture of
(BiLSTM) Model after applying
Random Search for Hyper-tuning
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a hierarchical feature learning capability that enables them to discern intricate patterns and
features within datasets.

In the context of exercise classification, the superior performance of the CNN model can
be attributed to its adeptness in extracting hierarchical spatial features from skeletal time-
series data, such as that captured by Kinect cameras during exercise execution. The model’s
robustness to spatial transformations and its capacity for hierarchical feature abstraction
contribute to its remarkable accuracy rates in discerning various exercises. Integrating these
architectural features within the CNN framework enhances its efficacy for exercise classifica-
tion tasks, showcasing its prowess in leveraging spatial relationships for accurate and robust
recognition of distinct movement patterns.

Moreover, CNNs have demonstrated remarkable adaptability and versatility beyond image
analysis, expanding their application to diverse domains. Notably, CNNs are extensively
utilized in disease classification within physical rehabilitation [90–93]. This highlights the
broad impact of CNNs in leveraging sensor data for tasks ranging from human activity
recognition to disease classification.

Through Hyper-parameter tuning, the parameters and architecture were determined to
comprise two convolutional layers, each housing 48 convolutional units with a 3x3 filter
size. A Max-Pooling Layer and a Flatten Layer followed this. Additionally, a dense layer
consisting of 544 units with ReLU activation was incorporated, followed by a dropout layer
with a rate of 0.2 to address potential over-fitting. A learning rate of 0.0025284 was identified
as the value for the learning process, and the model concluded with an output layer featuring
softmax activation. Figure 6 visually represents the architecture of the proposed model. This
architectural design was adopted after experimenting with various (CNN) implementations
and fine-tuning multiple model parameters using a random search approach.

4.4.4 CNN-LSTM

The (CNN-LSTM) architecture seamlessly integrates Convolutional Neural Networks
(CNNs) and Long Short-Term Memory (LSTM) networks, harnessing both spatial and tem-
poral information synchronously [94]. This fusion of CNNs for spatial feature extraction
and LSTMs for temporal pattern capture excels in video analysis and action recognition
tasks. Its significance is particularly pronounced in addressing challenges involving visual
content and its temporal evolution. This architecture finds versatile applications in fields like
video surveillance, medical imaging, and natural language processing, enriching insights
from sequential data by considering spatiotemporal relationships. In essence, (CNN-LSTM)
offers an efficient amalgamation of CNNs and LSTMs, providing a robust approach for
deciphering intricate data.

This study introduces a hybrid (CNN-LSTM) model for classification purposes. Here,
(CNN) serves as the feature extractor, while (LSTM) takes charge of classification, as illus-
trated in Fig. 7. The model parameters and architecture commence with a convolutional
layer comprising 128 filters, featuring a kernel size of 8, along with L2 and bias regularizers
set at 0.002276. A max-pooling layer and a dropout layer with a rate of 0.2 follow this.
Subsequently, an (LSTM) layer with 256 units is employed, succeeded by a flattened layer.
Two dense layers are added, each with 525 units and ReLU activation, complemented by a
dropout rate of 0.2. The learning rate identified for the learning process is 0.000777. Finally,
the output layer utilizes softmax activation. The architectural layout of the model is visually
depicted in Fig. 7. This architecture was adopted after conducting experiments with various
(CNN-LSTM) implementations and fine-tuning multiple model parameters using a random
search approach.
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Fig. 6 The architecture of (CNN)
Model after applying a Random
Search for Hyper-tuning

4.5 Model deployment andmonitoring

The deployment of a model in a production environment constitutes a pivotal phase in its
operational integration. Consequently, adopting model deployment with MLOps, as out-
lined in [95], becomes necessary. To facilitate model consumption, the design of an API
using Python frameworks, notably Flask, has been considered, drawing insights from var-
ious articles [96, 97], particularly those focusing on disease classifications involving Flask
development and its integration with machine learning models. The selection of Python is
motivated by its pre-defined packages, such as Tensorflow and Pandas [95]. The model can
be deployed in the production environment for its usage. Various cloud platforms, such as
Amazon Web Service (AWS), Microsoft Azure, or Google Cloud, can be utilized to deploy
themodel. In thisMLOps-driven deployment, an automated pipeline takes charge of continu-
ous monitoring, incorporating automated testing, validation services, and responsive actions
to maintain model accuracy. TheMLOps architecture facilitates a seamless machine learning
life-cycle, ensuring adaptive retraining of the model and consistent alignment with prede-
fined performance standards. Automated retraining can be utilized according to a predefined
schedule, focusing on ensuring thorough documentation and logging of the entire process.
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Fig. 7 The architecture of
(CNN-LSTM) Model after
applying a Random Search for
Hyper-tuning
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This includes logging predictions, inputs, and outputs for each inference and facilitating
auditing and debugging processes.

5 Experiments

Two experiments were conducted in this research. The First Experiment was conducted to
find the best exercise classification algorithm across both datasets. The Second experiment
was conducted to classify different diseases from patients while performing the same five
exercises in the KIMORE dataset.

5.1 Experiment 1: finding the best algorithm for exercise classification

The experiment assessed and contrasted the performance of distinct (LSTM) variations as
long as (CNN) models. The dataset was partitioned into training and testing subsets to an
80-20 ratio for training and testing. Furthermore, the training data was divided within the
training subset into an 80-20 ratio for training and validation data, which was utilized for
model training. This splitting employed the same number of folds as [35]. A 5-fold cross-
validation approach was adopted to mitigate over-fitting, maintaining a consistent batch size
of 32 for all models. This batch size choice aligns with the methodology employed in [29].
All models employed an identical loss function of categorical cross-entropy and were trained
for 450 epochs. An early stopping technique was also applied. All experiments were run on
the same machine with 15GB of GPU. Early stopping is a regularization technique used in
machine learning to prevent over-fitting. It stops a model’s training process when it starts
over-fitting the training data [98]. The Early Stopping technique was implemented to monitor
validation loss during training with a patient of 30 epochs. All models were trained simul-
taneously on the same machine using the same computational resources. Adam [99] (short
for Adaptive Moment Estimation) was also used as an optimization algorithm for training
machine learning models, particularly neural networks. It is an extension of stochastic gradi-
ent descent (SGD) and is designed to optimize the learning process by adapting the learning
rates of individual model parameters. Figure 2 [Data Splitting] visualizes the data splitting
phase. While [Training] Visualizes the training process and Hyper-parameters optimization.

5.2 Experiment 2: finding the best algorithm for disease classification

This investigation assessed and juxtaposed the efficacy of various (LSTM) variations and
(CNN) models in disease classification utilizing the KIMORE dataset. Following Experi-
ment 1, we maintained adherence to the established experimental protocol. This involved
employing a consistent 5-fold cross-validation approach, implementing an identical early
stopping callback throughout training for 450 epochs, and utilizing the same categorical
cross-entropy loss function with a batch size 32.

To rectify class imbalance, we implemented the SMOTE technique for oversampling.

5.3 Evaluationmetrics

The selection of specific evaluation metrics is a crucial aspect of assessing the performance
of machine learning models, and it involves a thoughtful consideration of the dataset’s char-
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acteristics and the study’s goals. In this work, we opted for a set of well-established metrics,
namely loss, accuracy, precision, recall, and F1-score, to comprehensively evaluate the pro-
posed models.

Our choice is motivated by the balanced nature of the datasets. While accuracy is a
commonly used metric that provides a general overview of overall model correctness, its
effectiveness can be influenced by the class distribution. In a balanced dataset, accuracy is a
suitable metric, and its inclusion ensures a broad assessment of model performance.

On the other hand, precision, recall, and F1-score are particularly relevant in scenarios
where a balanced consideration of false positives and false negatives is imperative. Precision
assesses the accuracy of positive predictions, recall measures the ability to capture all rele-
vant instances, and F1 score balances precision and recall. These metrics become especially
significant when the consequences of false positives and false negatives differ in importance.

Furthermore, incorporating loss as an evaluation metric offers insights into the con-
vergence and optimization process during training. Minimizing the loss is fundamental to
achieving accurate predictions, making it a valuable metric for assessing the training dynam-
ics.

In alignment with related work utilizing accuracy and F1-score, our choice of metrics
aims to provide a robust evaluation framework that considers various aspects of model perfor-
mance. This approach ensures a nuanced understanding of the proposedmodels effectiveness
in capturing global correctness and the balance between precision and recall, ultimately con-
tributing to our evaluation process’s scientific rigor and completeness.

6 Results

The Results section is organized into four main parts: Exercise Classification (Section 6.1), a
Comparison of State-of-the-art Methods (Section 6.2), Disease Classification (Section 6.3),
and an overview of Real-world Applications in (Section 6.4).

6.1 Exercise classification

The (CNN) model demonstrates the most efficient convergence in training, requiring the
fewest iterations to achieve lower loss values during the training process on both datasets.
The exercise classification results are further divided into two subsections, one for each
dataset.

6.1.1 KIMORE

In our experimental investigation of the KIMORE dataset, the Hyper-tuned (BiLSTM)model
emerged as the top-performing candidate, outperforming other models across all five critical
evaluation metrics. It achieved remarkable results with a mean accuracy of 93.08%, precision
of 93.07%, recall of 93.96%, an F1-score of 91.79%, and a loss value of 0.2860. Follow-
ing closely, the (CNN-LSTM) and Bi-LSTM models also delivered commendable results,
boasting accuracy rates of 91.79% and 87.18%, respectively. Notably, the Bi-LSTM model
exhibited a shorter mean training duration compared to the (CNN-LSTM) model, with the
(CNN-LSTM) consuming the highest duration of 7.88 minutes on average per fold. In con-
trast, the (CNN) model incurred the shortest training time, averaging 2.3 minutes. It’s worth
mentioning that the (CNN) model, while computationally expensive and resource-intensive
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due to its large number of trainable parameters (6,505,349), benefits from early stopping,
requiring the fewest iterations to converge, as demonstrated in Fig. 8.

However, the (LSTM) model displayed a comparatively less impressive performance in
this experimental context, yielding an average accuracy rate of 82.32%. This discrepancy
may be attributed to the intrinsic nature of (LSTM)models, which thrive when provided with
a substantial number of time steps. In our experiment, we deliberately constrained the time
steps to a single record.

Simultaneously, Fig. 8 presents a graphical representation of the precision metrics in
[b], the F1-score in [c], and the recall metric in [d]. These visual presentations offer valuable
insights into the progressive convergence patterns exhibited by themodels during the training
phase when utilizing the validation dataset.

Fig. 8 Iterations results on the KIMORE dataset, featuring five subgraphs illustrating the performance com-
parison of four models across different evaluationmetrics: [a] Accuracy, [b] Precision, [c] F1-score, [d] Recall,
and [e] Loss
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Table 4 The Mean Performance Metrics of Various Models on the KIMORE dataset, Alongside the Duration
Time for Each Fold (Measured in Minutes)

Algorithm Accuracy Precision Recall F1-Score Loss Training Time

LSTM 82.31% 82.40% 84.65% 79.49% 0.5519 2.45

BiLSTM 87.18% 87.34% 88.75% 86.67% 0.4608 5.62

CNN-LSTM 91.79% 91.79% 92.65% 90.77% 0.4139 7.88

CNN 93.08% 93.07% 93.96% 91.79% 0.2860 2.30

Additionally, as depicted in Fig. 8 [e], we present graphical representations of the loss
values for all fourmodels during thefinal fold,which is the lowest-scoring fold among thefive,
on the KIMORE dataset. The corresponding number of training iterations is also included in
the visualization. Furthermore, Fig. 8 [a] provides a visual overview of the recorded accuracy
metrics.

Table 4 presents a comprehensive comparison of mean results obtained by each of the four
models, employing diverse evaluation metrics during the rigorous testing phase. Correspond-
ingly, Fig. 9 supplements this analysis by providing a whisker box chart, which highlights the
distribution of performance metrics, including minimum, maximum, mean, and interquartile
range (IQR) values for the four models across the four evaluation metrics. This visual repre-
sentation offers a detailed overview of the performance variations and statistical distribution
of results for each model across all 5 folds.

6.1.2 UI-PRMD

For the second dataset, UI-PRMD, the (CNN) model showcased exceptional performance
across a comprehensive spectrum of evaluation metrics, encompassing Accuracy, Precision,
Recall, F1-Score, and Loss. The (CNN) model also exhibited remarkable efficiency, with an
average training duration of just 2.15 minutes across five-folds, thanks to its reduced itera-
tion requirements. This model achieved outstanding accuracy (99.70%), precision (99.70%),
recall (99.95%), and F1-score (99.70%), along with a minimized loss value of 0.0122.

Fig. 9 Key performance metrics, encompassing accuracy, precision, recall, and F1 score are presented through
whisker boxes for the 4 models. This visual representation underscores optimal outcomes on the KIMORE
dataset for exercise classification following a thorough 5-fold cross-validation
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Table 5 The Results of the different models on the UI-PRMD dataset

Algorithm Accuracy Precision Recall F1-Score Loss Training Time

BiLSTM 95.65% 95.71% 96.27% 94.70% 0.1434 13.45

LSTM 98.75% 98.75% 98.90% 98.75% 0.0626 4.18

CNN-LSTM 98.85% 98.85% 98.90% 98.85% 0.0676 8.54

CNN 99.70% 99.70% 99.75% 99.70% 0.0122 2.15

In the second position, the (CNN-LSTM) model achieved commendable results, with an
accuracy of 98.85%, precision of 98.85%, recall of 98.90%, F1-score of 98.90%, and a loss
value of 0.0676. However, it necessitated a relatively extended training duration, with an
average training time of 8.45 minutes. The (CNN-LSTM) model, despite its complexity with
16,799,497 parameters, demonstrated competitive performance and required slightly fewer
iterations compared to other algorithms, as shown in Fig. 8.

Conversely, both the Bi-LSTM and (LSTM) models delivered acceptable results, with
accuracy rates of 96.65% and 98.75%, respectively. Notably, the (LSTM) model exhibited
significantly shorter training times than Bi-LSTM, with an average of 4.18 minutes versus
13.45minutes, making it nearly three times faster. These outcomes emphasize the superiority
of the (CNN) model, the competitive performance of the (CNN-LSTM) model, and the
limitations observed in the (LSTM) model within this specific experimental context.

Furthermore, Table 5 compares the mean results attained by each of the three models,
utilizing various evaluation metrics during the testing phase. In addition, Fig. 10 presents an
additional whisker box chart, illustrating the results of the models on the UI-PRMD dataset.
As depicted in the figure, (CNN) surpassed all other models in performance and exhibited
the least variance across all five folds.

6.2 Comparison of state-of-the-art

This section provides a comparison of the current state-of-the-art methodologies applied to
the KIMORE and UI-PRMD datasets for the classification of exercises.

Fig. 10 Keyperformancemetrics, encompassing accuracy, precision, recall, andF1 score are presented through
whisker boxes for the four models. This visual representation underscores optimal outcomes on the UI-PRMD
dataset following a thorough 5-fold cross-validation
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Table 6 Comparison of our Tuned-CNN model with state-of-the-art methods on the KIMORE dataset

Algorithm Accuracy

Ensemble-based Graph Convolutional Network (EGCN) [39] 80.1%

3D Convolution Neural Network (3D-CNN) [41] 90.57%

Many-to-Many model with density map output [35] 92.33%

Our Tuned-CNN 93.08%

The Tuned-CNNmodel demonstrates remarkable performance when contrasted with pre-
vious studies conducted on the same dataset (KIMORE), achieving an impressive accuracy
rate of 93.08%. As per the extent of our investigation, this signifies a substantial enhance-
ment over the state-of-the-art methods reported by Abedi et al., who employed LSTM, and
a 1D-CNN followed by a fully connected neural network, showing improvements of 0.75%.
Barzegar et al.,’s utilization of a 3D-CNN is also surpassed by 2.51% [35]. A compara-
tive analysis of results obtained from prior research endeavors and the mean value of our
highest-scoring model is presented in Table 6.

In Table 7, a comprehensive comparison of our proposed models with other relevant
works on the UI-PRMD dataset is presented. Notably, our Tuned-CNN model achieves
an exceptional accuracy of 99.7%, outperforming existing state-of-art methods such as
Ensemble-based Graph Convolutional Network (EGCN) [39], Graph Convolutional Siamese
Network [37] by 0.5%, and Extra Tree Classifier after incorporating the FCBF feature rank-
ing technique [100] by 0.1%. This comparison underscores the superior performance of our
tuned CNN model in accurately classifying exercises on the UI-PRMD dataset.

6.3 Disease Classification

Our primary objective shifted from exercise classification to disease identification during
patient exercise in this experiment. Rather than conducting Hyper-parameter tuning to create
entirely new models, we retained the original models architecture and Hyper-parameters.
However, the results yielded less promising outcomes, primarily because these models
were initially designed and optimized for exercise classification, not disease identification.
Although we used the same dataset, the fundamental goal of this experiment significantly
differed from the previous one. Consequently, while we expected the tunedmodels to demon-
strate excellent performance on this specific dataset, their performance on other datasets
remained uncertain.

Table 7 Comparison of our Tuned-CNN model with state-of-the-art methods on the UI-PRMD dataset

Algorithm Accuracy

Ensemble-based Graph Convolutional Network (EGCN) [39] 86.9%

Graph Convolutional Siamese Network [37] 99.2%

FCBF - Extra Tree [100] 99.6%

Our Tuned-CNN 99.7%

123



Multimedia Tools and Applications

Fig. 11 Keyperformancemetrics, encompassing accuracy, precision, recall, andF1 score are presented through
whisker boxes for the four models. This visual representation underscores optimal outcomes on the KIMORE
dataset for disease classification following a thorough 5-fold cross-validation

Therefore, we decided not to perform model tuning on the new dataset to avoid over-
fitting. Furthermore, it’s important to note that using the same architecture on other available
datasets for disease classification is not feasible as such datasets are scarce.

We present the results as a whisker box chart to provide a comprehensive overview of
the model’s performance consistency across different folds in disease classification. This
chart, visualized in Fig. 11, displays the distribution of accuracy values across the five folds.
Each whisker box represents the interquartile range (IQR) of accuracy, with the central line
denoting the median accuracy. Outliers, if any, are also highlighted, offering insights into
the variability of model performance. Examining this graphical representation enhances our
understanding of the stability and reliability of the proposed models over multiple folds,
contributing valuable information for assessing the robustness of the disease classification
system. Detailed statistical measures such as mean, standard deviation, and confidence inter-
vals further complement the visual interpretation, comprehensively evaluating the models’
accuracy across different folds.

Once again, the (CNN) model exhibited superior performance, outperforming all other
algorithms, followed closely by CNN-LSTM, with only a tiny margin of 1.26%. Specifically,
the (CNN) model achieved an accuracy of 89.87%, while (CNN-LSTM) scored 88.61%.
Notably, the (CNN) model also boasted significantly faster training times, approximately 2.8
times faster than CNN-LSTM. In contrast, the Bi-LSTM model scored an average accuracy
of 61.52%, while the (LSTM) model struggled with just 55.06%. Table 8 lists the median
results across all metrics during the five folds.

Table 8 The Average Performance Metrics of Various Models on the KIMORE dataset for Disease Classifi-
cation

Algorithm Accuracy Precision Recall F1-Score Loss Training Time

LSTM 55.06% 54.63% 64.02% 36.64% 1.2521 3.98

BiLSTM 61.52% 57.30% 80.91% 47.47% 0.9633 9.07

CNN-LSTM 88.61% 88.64% 88.80% 88.35% 0.8937 20.89

CNN 89.87% 89.91‘% 90.63% 89.49% 0.48286 7.32
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It is essential to emphasize that while the results may not be outstanding, this represents an
initial experiment. Nomodel or Hyper-parameter tuningwas performed due to the constraints
imposed by the limited availability of datasets encompassing multiple diseases. Within the
scope of our research, other datasets for disease classification typically comprise only binary
classes, namely Normal and Affected.

In the context of disease classification, the performance evaluation of our proposed mod-
els includes a detailed analysis based on the confusion matrix and ANOVA analysis. The
confusion matrix results after the 5th fold, which is considered the best fold, provide a com-
prehensive visualization of themodel’s classification performance across four distinct classes:
normal, Parkinson’s disease, back pain, and stroke. This crucial information is graphically
represented in Fig. 12, which illustrates the model’s classification outcomes for each class.
The visualization aids in interpreting the effectiveness of the models in correctly categorizing
patients into the respective disease classes based on the performed exercises. This visual rep-
resentation can give further insights into precision, recall, and F1-score metrics, contributing
to a holistic understanding of the models disease classification capabilities.

ANOVA (Analysis of Variance) was conducted to assess the statistical differences in the
disease classification performance among four models-Bi-LSTM, CNN, CNN-LSTM, and
LSTM-utilized on the KIMORE dataset. Table 9 presents the ANOVA results, showcasing

Fig. 12 Confusion Matrix illustrating disease classification results obtained from the (CNN) model after the
5th fold
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key parameters such as count, sum, average, and variance for each model. The top section
details the model-wise statistical metrics. In contrast, the lower section delineates the source
of variation, Sums of Squares (SS), Degrees of Freedom (df), Mean Squares (MS), F-ratio
(F), P-value, and the Critical F value (F crit). The F-ratio is particularly noteworthy as it
indicates the ratio of between-group variance to within-group variance. In this context, a
statistically significant F-ratio (7.61) with a corresponding low P-value (0.0022) suggests
significant differences in disease classification performance among the models.

6.4 Real-world applications of the proposedmodel

The adoption of advanced machine learning technologies in physical rehabilitation not only
marks a significant advance in healthcare but also contributes to sustainability in the medical
sector. By leveragingmodels like 1DCNN,LSTM,BiLSTM, andCNN-LSTM, rehabilitation
processes become more efficient and personalized, reducing the need for frequent physical
visits and thus, the carbon footprint associated with healthcare delivery. This approach sup-
ports the Sustainable Development Goal (SDG) 3, aimed at ensuring health and well-being
for all, by making rehabilitation more accessible and reducing inequalities in health services.
Moreover, the emphasis on Human Activity Recognition (HAR) and the use of digital and
virtual reality tools in rehabilitation align with the broader goals of sustainable healthcare
by optimizing resource use and enhancing the quality of care. These innovations not only
improve patient outcomes but also align with global efforts towards universal health coverage
and sustainability in healthcare, showcasing a commitment to a future where healthcare is
both advanced and environmentally responsible.

6.4.1 Case study 1: remote patient monitoring

Enabling healthcare providers to monitor patients’ rehabilitation progress remotely, espe-
cially crucial for patients who cannot frequently visit healthcare facilities due to distance,
cost, or mobility issues.

6.4.2 Case study 2: physical therapy and rehabilitation

Automating the assessment of patients’ performance during physical therapy sessions, pro-
viding real-time feedback to both patients and therapists. This can enhance the recovery.

6.4.3 Case study 3: home-based rehabilitation

Offering a solution for patients to perform guided exercises at home with virtual supervision,
increasing the accessibility and frequency of rehabilitation sessions. With VR, patients can
engage in gamified rehabilitation exercises, making home-based therapy more enjoyable and
effective. AR can overlay instructional content on the patient’s environment, guiding them
through exercises correctly.

6.4.4 Case study 4: performance assessment in sports

Assisting coaches and athletes in analyzing performance for training effectiveness, injury
prevention, and technique improvement by providing detailed insights into each movement’s
execution.
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6.4.5 Case study 5: elderly care and fall prevention

Monitoring the elderly for sudden movements or falls and assessing their physical activity
levels to customize fall prevention exercises and improve overall mobility and independence.

6.4.6 Case study 6: interactive fitness applications

Integrating with fitness apps and devices to provide users with feedback on their workout
routines, ensuring exercises are done correctly to maximize benefits and reduce the risk of
injury. Fitness apps can leverage AR to project digital trainers into the user’s space, providing
personalized workout guidance, while VR can immerse users in engaging, virtual landscapes
to enhance the workout experience.

6.4.7 Case study 7: educational tools for physiotherapy

The proposed model can be used to disease classification and diagnosis, especially for con-
ditions like Parkinson’s, by analyzing movement data for early detection and personalized
care plans.

6.4.8 Case study 8: rehabilitation research

This model can be particularly effective in identifying patterns and anomalies in physical
movements associated with disorders such as Parkinson’s disease and various gait abnor-
malities. Through detailed analysis of exercise performance data, the model aids in the early
detection of these conditions, offering a significant improvement in diagnostic accuracy and
the potential for early intervention. This application underscores the model’s utility in not
just rehabilitation but also in the proactive management and diagnosis of movement-related
health issues, showcasing a versatile approach to healthcare.

6.4.9 Case study 9: disease classification and diagnosis throughmovement analysis

The proposed model can be used in disease classification and diagnosis, especially for con-
ditions like Parkinson’s, by analyzing movement data for early detection and personalized
care plans.

7 Discussion

Using the Random Search technique to design diverse network architectures and fine-tune
Hyper-parameters significantly impacted model performance. Our proposed Tuned-CNN
model achieved state-of-the-art results on the KIMORE and UI-PRMD datasets, showcasing
exceptional performance across different domains. Similarly, the Tuned-CNN-LSTMmodel
demonstrated impressive and competitive performance on both datasets, highlighting its
adaptability and effectiveness.

Interestingly, the (CNN) despite its complexity and a larger number of trainable parame-
ters, exhibited efficient learning and the shortest training times. This efficiency resulted from
requiring the fewest iterations and benefiting from early stopping. On the other hand, the
Tuned-CNN-LSTMandTuned-BiLSTMmodels demanded greater computational resources,
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longer training times, and higher resource consumption. Notably, the (CNN) model achieved
a remarkable accuracy of 99.70% on the UI-PRMD dataset and 93.08% accuracy on the
KIMORE dataset for exercise classification. Finally, we recommend prioritizing using our
Tuned-BiLSTM architecture over the Tuned-LSTM model.

The (CNN) and (CNN-LSTM) models also demonstrated impressive performance in dis-
ease classification on the KIMORE dataset, achieving accuracy rates of 89.87% and 88.61%,
respectively.

Conversely, the (LSTM) model demonstrated consistent but sub-optimal results across
both datasets. This performance discrepancy may be attributed to the algorithms inherent
characteristics, particularly the LSTM’s need for more timesteps. During our feature engi-
neering phase, we generated only one timestep per record, potentially limiting the LSTM’s
capacity to excel.

The results highlighted the exceptional performance of the tuned (CNN) and (CNN-
LSTM) models, consistently outperforming others across all evaluation metrics. The (CNN)
model achieved remarkable accuracy scores of 93.08% and 99.7% on the KIMORE and UI-
PRMD datasets, respectively. Notably, this performance surpassed the previous research on
the same dataset by 0.75% on the KIMORE dataset and 0.1% on the UI-PRMD dataset. Our
tuned (CNN) and (CNN-LSTM)models yielded very close results for disease classification on
the KIMORE dataset, achieving an accuracy rate of nearly 89.9% and 88.61%, respectively.
Specifically, the (CNN) model outperformed the (CNN-LSTM) model by approximately
1.26%, demonstrating significantly faster training times.

Despite the promising outcomes of our study, it is essential to address certain limita-
tions. The proposed (CNN) model, while achieving remarkable performance, comes with the
requirement of an additional preprocessing step. It assumes that the video footage capturing
the exercise is already cropped, precisely marking the start and end of the movement. This
assumption implies a reliance on preprocessed data, potentially limiting the model’s adapt-
ability to scenarios where such precise cropping is not readily available. Consequently, the
generalizability of the proposed model may be influenced by the availability and accuracy
of preprocessed datasets, necessitating careful consideration and potentially constraining
its applicability in real-world situations where detailed annotations may be challenging to
obtain.

8 Conclusion and future work

In conclusion, this research has significantly advanced the field of physical therapy and
exercise classification through innovative methodologies. The introduction of a pioneering
approach to feature engineering, representing exercises as 1D vectors using various statistical
techniques, offers a novel perspective for exercise representation. Additionally, optimizing
model performance by applying a random search methodology for designing the architec-
tural framework of the proposed models contributes to increased efficiency and a deeper
understanding of model behavior.

A substantial contribution is evident in the detailed comparative analysis across four dis-
tinct models (LSTM, Bi-LSTM, CNN, and CNN-LSTM) using two diverse datasets. This
comparative study provides valuable insights into the strengths andweaknesses of eachmodel
in exercise classification, offering a nuanced understanding of performance variations. More-
over, the study’s experimentationwithmultiple datasets, utilizing cross-validation techniques
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to derive results from testing data, ensures robust model generalization performance across
diverse datasets, enhancing the credibility of the study’s findings.

The CNN model exhibited outstanding accuracy, attaining scores of 93.08% and 99.7%
on the KIMORE and UI-PRMD datasets, respectively. This surpasses the state-of-the-art on
both datasets by 0.75 and 0.1%, respectively. Moreover, the model demonstrated notable
proficiency in disease classification, enabling the detection of correct and incorrect exercise
techniques and achieving a disease diagnosis accuracy of 89.87%.

Notably, the (CNN) model boasts a lightweight architecture beyond its exceptional per-
formance, making it suitable for deployment on low-power devices such as mobile apps.
Furthermore, its efficient use of resources contributes to overall computational efficiency over
video-based and image-based approaches. Themodel exhibits strong generalization capabili-
ties across diverse datasets, ensuring its applicability to varied scenarios. This amalgamation
of superior performance, resource efficiency, and generalization proficiency positions the
(CNN) model as a promising and versatile solution in the domain of exercise classification
and disease identification within the field of physical rehabilitation.

AdoptingMLOps methods contributed to the smooth integration of machine learning into
the software development life-cycle, improving collaboration, reproducibility, and scalabil-
ity. This approach ensures deployed models’ long-term efficacy and durability in dynamic
operational situations.

In summary, this research’s multifaceted contributions not only advance the understand-
ing of physical rehabilitation and exercise classification but also extend the utility of the
proposed models to disease identification. This marks a significant advancement in research
and practical applications, contributing to the broader knowledge base and fostering future
developments in the field.

Moreover, an areawarranting further investigation is the accuracy of theKIMOREdataset.
Despite achieving exceptional results, there is room for in-depth study to uncover poten-
tial refinements and optimizations. This exploration could delve into refining the model
architecture, feature engineering techniques, or considering additional data augmentation
strategies. Future research endeavors could also explore attention-based mechanisms to
enhancemodel robustness. Specifically, implementing afixed or overlappingwindowstrategy
might overcome the precision limitations associated with requiring a precise crop in video
data, facilitating real-time applications. This approach could improve the model’s adapt-
ability to scenarios with challenging detailed annotations or precise cropping. Additionally,
integrating Transfer Learning into our research paradigm is a promising avenue, albeit chal-
lenging. The dissimilarities between the UI-PRMD and KIMORE datasets, encompassing
variations in anatomical joint data and exercise types, present hurdles that need creative solu-
tions. Addressing these challenges will pave the way for more comprehensive and effective
model transferability, ensuring the model’s success in diverse settings and scenarios.
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Zamysłowska-Szmytke E (2022) Classification of subjects with balance disorders using 1d-cnn and
inertial sensors. IEEE Access 10, 127610–127619. https://doi.org/10.1109/ACCESS.2022.3225521

85. Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural Comput 9(8):1735–1780. https://
doi.org/10.1162/neco.1997.9.8.1735

86. Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R (2014) Dropout: A simple way to
prevent neural networks from overfitting. J Mach Learn Res 15:1929–1958

87. Bridle JS (1989) Training stochastic model recognition algorithms as networks can lead to maximum
mutual information estimation of parameters. In: advances in neural information processing systems,
vol 2

88. Schuster M, Paliwal KK (1997) Bidirectional recurrent neural networks. IEEE Trans Signal Process
45(11):2673–2681. https://doi.org/10.1109/78.650093

89. LeCunY,BottouL,BengioY,Haffner P (1998)Gradient-based learning applied to document recognition.
Proc IEEE 86(11):2278–2324. https://doi.org/10.1109/5.726791

90. Quan C, Ren K, Luo Z (2021) A deep learning based method for parkinson’s disease detection
using dynamic features of speech. IEEEAccess 9:10239–10252. https://doi.org/10.1109/ACCESS.2021.
3051432

91. Al Rahhal MM, Bazi Y, Al Zuair M, Othman E, BenJdira B (2018) Convolutional neural networks for
electrocardiogram classification. J Med Biol Eng 38:1014–1025. https://doi.org/10.1007/s40846-018-
0389-7

92. Wang K, Jiang P, Meng J, Jiang X (2022) Attention-based densenet for pneumonia classification. IRBM
43(5):479–485. https://doi.org/10.1016/j.irbm.2021.12.004

93. Lauritsen SM, Kalør ME, Kongsgaard EL, Lauritsen KM, Jørgensen MJ, Lange J, Thiesson B (2020)
Early detection of sepsis utilizing deep learning on electronic health record event sequences. Artif Intell
Med 104:101820. https://doi.org/10.1016/j.artmed.2020.101820

94. Donahue J, Hendricks LA, Guadarrama S, Rohrbach M, Venugopalan S, Saenko K, Darrell T (2015)
Long-term recurrent convolutional networks for visual recognition and description. In: Proceedings of
the IEEE conference on computer vision and pattern recognition, pp 2625–2634

95. AkkemY, Biswas SK,Varanasi A (2023) Smart farmingmonitoring usingml andmlops. In: international
conference on innovative computing and communication, Springer, pp 665–675. https://doi.org/10.1007/
978-981-99-3315-0_51

96. Yaganteeswarudu A (2020) Multi disease prediction model by using machine learning and flask api. In:
2020 5th International conference on communication and electronics systems (ICCES), pp 1242–1246.
https://doi.org/10.1109/ICCES48766.2020.9137896

97. Yaganteeswarudu A, Dasari P (2021) Diabetes analysis and risk calculation – auto rebuild model by
using flask api. In: Chen JI-Z, Tavares JMRS, Shakya S, Iliyasu AM (eds.) Image Processing and
Capsule Networks, Springer, Cham. pp 299–308. https://doi.org/10.1007/978-3-030-51859-2_27

123

https://doi.org/10.3390/s21196369
https://doi.org/10.1016/j.ins.2020.03.014
https://doi.org/10.1016/j.ins.2020.03.014
https://doi.org/10.1080/10255842.2022.2106785
https://doi.org/10.1155/2022/9994304
https://doi.org/10.1007/978-981-13-1951-8
https://doi.org/10.1007/978-981-19-0898-9_42
https://doi.org/10.3390/s23010363
https://doi.org/10.3390/s23010363
https://doi.org/10.1007/s13246-021-01071-6
https://doi.org/10.1007/s13246-021-01071-6
https://doi.org/10.1109/ACCESS.2022.3225521
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1109/78.650093
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/ACCESS.2021.3051432
https://doi.org/10.1109/ACCESS.2021.3051432
https://doi.org/10.1007/s40846-018-0389-7
https://doi.org/10.1007/s40846-018-0389-7
https://doi.org/10.1016/j.irbm.2021.12.004
https://doi.org/10.1016/j.artmed.2020.101820
https://doi.org/10.1007/978-981-99-3315-0_51
https://doi.org/10.1007/978-981-99-3315-0_51
https://doi.org/10.1109/ICCES48766.2020.9137896
https://doi.org/10.1007/978-3-030-51859-2_27


Multimedia Tools and Applications

98. Prechelt L (1998) In: Orr GB, Müller K-R (eds.) Early Stopping – But When?, Springer, Berlin, Heidel-
berg, pp 55–69. https://doi.org/10.1007/3-540-49430-8_3

99. Kingma DP, Ba J (2014) Adam: A method for stochastic optimization. https://doi.org/10.48550/arXiv.
1412.6980

100. Zaher M, Samir A, Ghoneim A, Abdelhamid L, Atia A (2023) A framework for assessing physical
rehabilitation exercises. In: 2023 Intelligent methods, systems, and applications (IMSA), pp 526–532.
https://doi.org/10.1109/IMSA58542.2023.10217392

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Authors and Affiliations

Moamen Zaher1,5 · Amr S. Ghoneim2 · Laila Abdelhamid3 · Ayman Atia4,5

Amr S. Ghoneim
amr.ghoneim@fci.helwan.edu.eg

Laila Abdelhamid
Laila.abdelhamid@fci.helwan.edu.eg

Ayman Atia
aezzat@msa.edu.eg
https://www.fcih.net/ayman/

1 Software Engineering Program, Faculty of Computers & Artificial Intelligence—Helwan
University, Ain Helwan 11795, Cairo, Egypt

2 Computer Science Department, Faculty of Computers & Artificial Intelligence—Helwan
University, Ain Helwan 11795, Cairo, Egypt

3 Information System Department, Faculty of Computers & Artificial Intelligence—Helwan
University, Ain Helwan 11795, Cairo, Egypt

4 HCI-LAB, Faculty of Computers & Artificial Intelligence—Helwan University (HU), Ain Helwan
11795, Cairo, Egypt

5 Faculty of Computer Science, October University for Modern Sciences and Arts (MSA), October
12451, Giza, Egypt

123

https://doi.org/10.1007/3-540-49430-8_3
https://doi.org/10.48550/arXiv.1412.6980
https://doi.org/10.48550/arXiv.1412.6980
https://doi.org/10.1109/IMSA58542.2023.10217392
http://orcid.org/0009-0004-8560-4563
https://orcid.org/0000-0003-3522-4875
https://orcid.org/0000-0002-7928-5680
https://orcid.org/0000-0003-4998-5624

	Unlocking the potential of RNN and CNN models for accurate rehabilitation exercise classification on multi-datasets
	Abstract
	1 Introduction
	2 Literature review
	2.1 Deep learning-based approaches
	2.2 Ensemble-based approaches
	2.3 Transformer-based approaches
	2.4 Transfer-based approaches

	3 Datasets characteristics
	3.1 UI-PRMD
	3.2 KIMORE

	4 Methodology
	4.1 Data input
	4.2 Data preparation & preprocessing
	4.3 Hyper-parameters tuning
	4.4 Action classification
	4.4.1 Long short-term memory (LSTM)
	4.4.2 Bidirectional Long Short-Term Memory (BiLSTMs)
	4.4.3 Convolutional Neural Networks (CNN)
	4.4.4 CNN-LSTM

	4.5 Model deployment and monitoring

	5 Experiments
	5.1 Experiment 1: finding the best algorithm for exercise classification
	5.2 Experiment 2: finding the best algorithm for disease classification
	5.3 Evaluation metrics

	6 Results
	6.1 Exercise classification
	6.1.1 KIMORE
	6.1.2 UI-PRMD

	6.2 Comparison of state-of-the-art
	6.3 Disease Classification
	6.4 Real-world applications of the proposed model
	6.4.1 Case study 1: remote patient monitoring
	6.4.2 Case study 2: physical therapy and rehabilitation
	6.4.3 Case study 3: home-based rehabilitation
	6.4.4 Case study 4: performance assessment in sports
	6.4.5 Case study 5: elderly care and fall prevention
	6.4.6 Case study 6: interactive fitness applications
	6.4.7 Case study 7: educational tools for physiotherapy
	6.4.8 Case study 8: rehabilitation research
	6.4.9 Case study 9: disease classification and diagnosis through movement analysis


	7 Discussion
	8 Conclusion and future work
	Acknowledgements
	References


