Ali, Ahmed IAboZied, Abd El-Rahman TGhani, AASalaheldin, Taher A2019-11-232019-11-232019-04Phan M-H, Yu S-C. Review of the magnetocaloric effect in manganite materials. J Magn Magn Mater. 2007;308(2):325–40. https://doi.org/10.1016/j.jmmm.2006.07.025. CrossRefGoogle Scholar 2. Bohigas X, del Barco E, Sales M, Tejada J. Magnetocaloric effect in La0.65Ca0.35Ti1−xMnxO3 ceramic perovskites. J Magn Magn Mater. 1999;196–197:455–7. https://doi.org/10.1016/S0304-8853(98)00812-9. CrossRefGoogle Scholar 3. Gordon JE, Fisher RA, Jia YX, Phillips NE, Reklis SF, Wright DA, et al. Specific heat of Nd(1−x)SrxMnO3. J Magn Magn Mater. 1998;177–181(Part 2):856–7. https://doi.org/10.1016/S0304-8853(97)00305-3. CrossRefGoogle Scholar 4. Selmi A, M’nassri R, Cheikhrouhou-Koubaa W, Chniba Boudjada N, Cheikhrouhou A. Influence of transition metal doping (Fe Co, Ni and Cr) on magnetic and magnetocaloric properties of Pr0.7Ca0.3MnO3 manganites. Ceram Int. 2015;41(8):10177–84. https://doi.org/10.1016/j.ceramint.2015.04.123. CrossRefGoogle Scholar 5. M’nassri R, Cheikhrouhou A. Magnetocaloric properties in ordered double-perovskite Ba2Fe1−xCrxMoO6 (0 ≤ x ≤ 1). J Korean Phys Soc. 2014;64(6):879–85. https://doi.org/10.3938/jkps.64.879. CrossRefGoogle Scholar 6. Dan’kov SY, Tishin AM, Pecharsky VK, Gschneidner KA. Magnetic phase transitions and the magnetothermal properties of gadolinium. Phys Rev B. 1998;57(6):3478–90. CrossRefGoogle Scholar 7. M’nassri R, Chniba Boudjada N, Cheikhrouhou A. Impact of sintering temperature on the magnetic and magnetocaloric properties in Pr0.5Eu0.1Sr0.4MnO3 manganites. J Alloys Compd. 2015;626:20–8. https://doi.org/10.1016/j.jallcom.2014.11.141. CrossRefGoogle Scholar 8. Moumen M, Mehri A, Cheikhrouhou-Koubaa W, Koubaa M, Cheikhrouhou A. Structural, magnetic and magnetocaloric properties in Pr0.5M0.1Sr0.4MnO3 (M = Eu, Gd and Dy) polycrystalline manganites. J Alloy Compd. 2011;509(37):9084–8. https://doi.org/10.1016/j.jallcom.2011.06.045. CrossRefGoogle Scholar 9. Thompson JMT, Ziese M. Colossal magnetoresistance, half metallicity and spin electronics. Philos Trans R Soc Lond Ser A Math Phys Eng Sci. 2000;358(1765):137–50. https://doi.org/10.1098/rsta.2000.0524. CrossRefGoogle Scholar 10. Balcells L, Enrich R, Mora J, Calleja A, Fontcuberta J, Obradors X. Manganese perovskites: thick-film based position sensors fabrication. Appl Phys Lett. 1996;69(10):1486–8. https://doi.org/10.1063/1.116916. CrossRefGoogle Scholar 11. Jin S, McCormack M, Tiefel TH, Ramesh R. Colossal magnetoresistance in La–Ca–Mn–O ferromagnetic thin films (invited). J Appl Phys. 1994;76(10):6929–33. https://doi.org/10.1063/1.358119. CrossRefGoogle Scholar 12. Lisauskas A, Khartsev SI, Grishin A. Tailoring the colossal magnetoresistivity: La0.7(Pb0.63Sr0.37)0.3MnO3 thin-film uncooled bolometer. Appl Phys Lett. 2000;77(5):756–8. https://doi.org/10.1063/1.127109. CrossRefGoogle Scholar 13. Lussier A, Dvorak J, Stadler S, Holroyd J, Liberati M, Arenholz E, et al. Stress relaxation of La1/2Sr1/2MnO3 and La2/3Ca1/3MnO3 at solid oxide fuel cell interfaces. Thin Solid Films. 2008;516(6):880–4. https://doi.org/10.1016/j.tsf.2007.04.049. CrossRefGoogle Scholar 14. Miyazaki K, Sugimura N, Matsuoka K, Iriyama Y, Abe T, Matsuoka M, et al. Perovskite-type oxides La1−xSrxMnO3 for cathode catalysts in direct ethylene glycol alkaline fuel cells. J Power Sources. 2008;178(2):683–6. https://doi.org/10.1016/j.jpowsour.2007.08.007. CrossRefGoogle Scholar 15. Phan M-H, Peng H-X, Yu S-C, Tho ND, Nhat HN, Chau N. Manganese perovskites for room temperature magnetic refrigeration applications. J Magn Magn Mater. 2007;316(2):e562–5. https://doi.org/10.1016/j.jmmm.2007.03.021. CrossRefGoogle Scholar 16. Dormann JL, Fiorani D, Tronc E. On the models for interparticle interactions in nanoparticle assemblies: comparison with experimental results. J Magn Magn Mater. 1999;202(1):251–67. https://doi.org/10.1016/S0304-8853(98)00627-1. CrossRefGoogle Scholar 17. Iacob N, Schinteie G, Bartha C, Palade P, Vekas L, Kuncser V. Effects of magnetic dipolar interactions on the specific time constant in superparamagnetic nanoparticle systems. J Phys D Appl Phys. 2016;49(29):295001. CrossRefGoogle Scholar 18. Jönsson EP. Superparamagnetism and spin glass dynamics of interacting magnetic nanoparticle systems. Adv Chem Phys. 2004;128:191–248. arXiv:cond-mat/0310684v2. Google Scholar 19. Suzuki M, Fullem SI, Suzuki IS, Wang L, Zhong C-J. Observation of superspin-glass behavior in Fe3O4 nanoparticles. Phys Rev B. 2009;79(2):024418. CrossRefGoogle Scholar 20. Subhankar B, Wolfgang K. Supermagnetism. J Phys D Appl Phys. 2009;42(1):013001. CrossRefGoogle Scholar 21. Urushibara A, Moritomo Y, Arima T, Asamitsu A, Kido G, Tokura Y. Insulator-metal transition and giant magnetoresistance in La1−xSrxMnO3. Phys Rev B. 1995;51(20):14103–9. CrossRefGoogle Scholar 22. Goodenough JB. Theory of the role of covalence in the perovskite-type manganites [La, M(II)]MnO3. Phys Rev. 1955;100(2):564–73. CrossRefGoogle Scholar 23. Ayadi F, Saadaoui F, Cheikhrouhou-Koubaa W, Koubaa M, Cheikhrouhou A, Sicard L, et al. Effect of monovalent doping on the physical properties of La0.7Sr0.3MnO3 compound synthesized using sol–gel technique. IOP Conf Ser Mater Sci Eng. 2012;28(1):012054. CrossRefGoogle Scholar 24. Cullity BD, Stock SR. Elements of X-ray diffraction. 3rd ed. London: Pearson Education Limited; 2014. Google Scholar 25. Cullity BD. Elements of X-ray diffraction. 2nd ed. Reading: Addison-Wesley Publishing Company Inc.; 1978. Google Scholar 26. Egilmez M, Chow KH, Jung J. Percolative model of the effect of disorder on the resistive peak broadening in La23Ca13MnO3 near the metal-insulator transition. Appl Phys Lett. 2008;92(16):162515. https://doi.org/10.1063/1.2908931. CrossRefGoogle Scholar 27. Soh Y-A, Aeppli G, Mathur ND, Blamire MG. Mesoscale magnetism at the grain boundaries in colossal magnetoresistive films. Phys Rev B. 2000;63(2):020402. CrossRefGoogle Scholar 28. M’nassri R, Chniba-Boudjada N, Cheikhrouhou A. 3D-Ising ferromagnetic characteristics and magnetocaloric study in Pr0.4Eu0.2Sr0.4MnO3 manganite. J Alloys Compd. 2015;640:183–92. https://doi.org/10.1016/j.jallcom.2015.03.220. CrossRefGoogle Scholar 29. Tishin AM, Spichkin I. The magnetocaloric effect and its applications. Bristol: Institute of Physics Publishing; 2003. CrossRefGoogle Scholar 30. Phan M-H, Yu S-C, Hur NH, Jeong Y-H. Large magnetocaloric effect in a La0.7Ca0.3MnO3 single crystal. J Appl Phys. 2004;96(2):1154–8. https://doi.org/10.1063/1.1762710. CrossRefGoogle Scholar 31. Pękała M, Drozd V. Magnetocaloric effect in nano- and polycrystalline La0.8Sr0.2MnO3 manganites. J Non-Cryst Solids. 2008;354(47–51):5308–14. https://doi.org/10.1016/j.jnoncrysol.2008.06.112. CrossRefGoogle Scholar 32. Pękała M, Drozd V. Magnetocaloric effect in La0.8Sr0.2MnO3 manganite. J Alloy Compd. 2008;456(1–2):30–3. https://doi.org/10.1016/j.jallcom.2007.02.092. CrossRefGoogle Scholar 33. Zhang X, Fan J, Xu L, Hu D, Zhang W, Zhu Y. Magnetic and magnetocaloric properties of nanocrystalline La0.5Sr0.5MnO3. Ceram Int. 2016;42(1, Part B):1476–81. https://doi.org/10.1016/j.ceramint.2015.09.093. CrossRefGoogle Scholar 34. Xi S, Lu W, Sun Y. Magnetic properties and magnetocaloric effect of La0.8Ca0.2MnO3 nanoparticles tuned by particle size. J Appl Phys. 2012;111(6):063922. https://doi.org/10.1063/1.3699037. CrossRefGoogle Scholar 35. Ben Khlifa H, Ayadi F, M’nassri R, Cheikhrouhou-Koubaa W, Schmerber G, Cheikhrouhou A. Screening of the synthesis route on the structural, magnetic and magnetocaloric properties of La0.6Ca0.2Ba0.2MnO3 manganite: a comparison between solid-solid state process and a combination polyol process and spark plasma sintering. J Alloy Compd. 2017;712:451–9. https://doi.org/10.1016/j.jallcom.2017.04.101. CrossRefGoogle Scholar 36. Choura-Maatar S, M’nassri R, Cheikhrouhou-Koubaa W, Koubaa M, Cheikhrouhou A, Hlil EK. Sodium-deficiency effects on the structural, magnetic and magnetocaloric properties of La0.8Na0.2−x□xMnO3 (0 ≤ x ≤ 0.15). J Magn Magn Mater. 2017;433:239–47. https://doi.org/10.1016/j.jmmm.2017.03.026. CrossRefGoogle Scholar 37. Mleiki A, M’nassri R, Cheikhrouhou-Koubaa W, Cheikhrouhou A, Hlil EK. Structural characterization, magnetic, magnetocaloric properties and critical behavior in lacunar La0.5Eu0.2Ba0.2□0.1MnO3 nanoparticles. J Alloy Compd. 2017;727:1203–12. https://doi.org/10.1016/j.jallcom.2017.08.236. CrossRefGoogle Scholar 38. Banerjee BK. On a generalised approach to first and second order magnetic transitions. Phys Lett. 1964;12(1):16–7. https://doi.org/10.1016/0031-9163(64)91158-8.1388-6150https://link.springer.com/article/10.1007/s10973-018-7642-8Accession Number: WOS:000463913600019In this work, we reported a detailed study on the synthesis, structural and magnetic properties of nanocrystalline La0.8Sr0.2MnO3. The synthesized nanoparticles were prepared using a sol-gel method and characterized using X-ray diffraction and high-resolution transmission electron microscope. The average particle size was found in the range from 40 to 45 nm. The magnetization versus temperature M(7) measurements as well as magnetization field dependence M(H) have been investigated using vibrating-sample magnetometer. The magnetization as a function of temperature M(7) indicated a broad second-order magnetic phase transition from ferromagnetic state to paramagnetic state in the Curie temperature region (320-340 K). The magnetocaloric effect of the sample has been estimated and presented a maximum magnetic entropy change vertical bar Delta S-M vertical bar(max) = 0.86 J kg(-1) K-1 with relative cooling power = 62.12 J kg(-1) at magnetic field (H) = 2T. Based on the result of magnetocaloric properties, the investigated sample could be considered as a good refrigerant material for near room temperature magnetic refrigeration.en-USUniversity for Magnetocaloric effectMagnetic propertiesNanocrystallineSol-gel methodManganiteCRTRANSITIONTEMPERATUREMANGANESE PEROVSKITESCOLOSSAL MAGNETORESISTANCESynthesis, structural, magnetic and magnetocaloric properties of La0.8Sr0.2MnO3 nanoparticlesArticle