Nissan, Y.MArafa, R.K.Maher, AMotaleb, M.A.Sakr, T.M.Sharaky, M.M.Ibrahim, D.MAhmed, W.A.Mohamed, K.O2020-02-032020-02-032020-03Ricci, M.S., Zong, W.-X. Chemotherapeutic approaches for targeting cell death pathways (2006) Oncologist, 11 (4), pp. 342-357. Cited 293 times. http://theoncologist.alphamedpress.org/cgi/reprint/11/4/342 doi: 10.1634/theoncologist.11-4-342 View at Publisher 4 last accessed 18/6/2018. https://www.mycancergenome.org/content/molecular-medicine/pathways/cytotoxic-chemotherapy-mechanisms-of-action 5 Elmore, S. Apoptosis: A Review of Programmed Cell Death (Open Access) (2007) Toxicologic Pathology, 35 (4), pp. 495-516. Cited 5291 times. doi: 10.1080/01926230701320337 View at Publisher 6 Danial, N.N., Korsmeyer, S.J. Cell Death: Critical Control Points (Open Access) (2004) Cell, 116 (2), pp. 205-219. Cited 3602 times. www.cell.com doi: 10.1016/S0092-8674(04)00046-7 View at Publisher 7 Hengartner, M.O. The biochemistry of apoptosis (2000) Nature, 407 (6805), pp. 770-776. Cited 5675 times. doi: 10.1038/35037710 View at Publisher 8 Teitz, T., Wei, W., Valentine, M.B., Vanin, E.F., Grenet, J., Valentine, V.A., Behm, F.G., (...), Kidd, V.J. Caspase 8 is deleted or silenced preferentially in childhood neuroblastomas with amplification of MYCN (2000) Nature Medicine, 6 (5), pp. 529-535. Cited 653 times. doi: 10.1038/75007 View at Publisher 9 Wang, C., Youle, R.J. The role of mitochondria in apoptosis (2009) Annual Review of Genetics, 43, pp. 95-118. Cited 762 times. doi: 10.1146/annurev-genet-102108-134850 View at Publisher 10 Casini, A., Scozzafava, A., Mastrolorenzo, A., Supuran, C.T. Sulfonamides and sulfonylated derivatives as anticancer agents (2002) Current Cancer Drug Targets, 2 (1), pp. 55-75. Cited 200 times. doi: 10.2174/1568009023334060 View at Publisher 11 Gul, H.I., Yamali, C., Bulbuller, M., Kirmizibayrak, P.B., Gul, M., Angeli, A., Bua, S., (...), Supuran, C.T. Anticancer effects of new dibenzenesulfonamides by inducing apoptosis and autophagy pathways and their carbonic anhydrase inhibitory effects on hCA I, hCA II, hCA IX, hCA XII isoenzymes (2018) Bioorganic Chemistry, 78, pp. 290-297. Cited 8 times. http://www.elsevier.com/inca/publications/store/6/2/2/7/9/4/index.htt doi: 10.1016/j.bioorg.2018.03.027 View at Publisher 12 Agudo-López, A., Prieto-García, E., Alemán, J., Pérez, C., Díaz-García, C.V., Parrilla-Rubio, L., Cabrera, S., (...), Agulló-Ortuño, M.T. Mechanistic added value of a trans-Sulfonamide-Platinum-Complex in human melanoma cell lines and synergism with cis-Platin (Open Access) (2017) Molecular Cancer, 16 (1), art. no. 45. Cited 5 times. http://www.molecular-cancer.com/start.asp doi: 10.1186/s12943-017-0618-7 View at Publisher 13 Guo, C.-L., Wang, L.-J., Zhao, Y., Liu, H., Li, X.-Q., Jiang, B., Luo, J., (...), Shi, D.-Y. A novel bromophenol derivative BOS-102 induces cell cycle arrest and apoptosis in human A549 lung cancer cells via ROS-mediated PI3K/Akt and the MAPK signaling pathway (Open Access) (2018) Marine Drugs, 16 (2), art. no. 43. Cited 15 times. http://www.mdpi.com/1660-3397/16/2/43/pdf doi: 10.3390/md16020043 View at Publisher 14 Reddy, N.D., Shoja, M.H., Biswas, S., Nayak, P.G., Kumar, N., Rao, C.M. An appraisal of cinnamyl sulfonamide hydroxamate derivatives (HDAC inhibitors) for anti-cancer, anti-angiogenic and anti-metastatic activities in human cancer cells (2016) Chemico-Biological Interactions, 253, pp. 112-124. Cited 11 times. www.elsevier.com/locate/chembioint doi: 10.1016/j.cbi.2016.05.008 View at Publisher 15 Alafeefy, A.M., Alqasoumi, S.I., Ashour, A.E., Alshebly, M.M. Quinazoline-sulfonamides as potential antitumor agents: Synthesis and biological testing (Open Access) (2015) Journal of Enzyme Inhibition and Medicinal Chemistry, 28 (2), pp. 375-383. Cited 5 times. doi: 10.3109/14756366.2012.668541 View at Publisher 16 Cumaoglu, A., Dayan, S., Agkaya, A.O., Ozkul, Z., Ozpozan, N.K. Synthesis and pro-apoptotic effects of new sulfonamide derivatives via activating p38/ERK phosphorylation in cancer cells (Open Access) (2015) Journal of Enzyme Inhibition and Medicinal Chemistry, 30 (3), pp. 413-419. Cited 6 times. doi: 10.3109/14756366.2014.940938 View at Publisher 17 Ghorab, M.M., Ceruso, M., Alsaid, M.S., Nissan, Y.M., Arafa, R.K., Supuran, C.T. Novel sulfonamides bearing pyrrole and pyrrolopyrimidine moieties as carbonic anhydrase inhibitors: Synthesis, cytotoxic activity and molecular modeling (2014) European Journal of Medicinal Chemistry, 87, pp. 186-196. Cited 33 times. http://www.journals.elsevier.com/european-journal-of-medicinal-chemistry/ doi: 10.1016/j.ejmech.2014.09.059 View at Publisher 18 Ghorab, M.M., Alsaid, M.S., Ceruso, M., Nissan, Y.M., Supuran, C.T. Carbonic anhydrase inhibitors: Synthesis, molecular docking, cytotoxic and inhibition of the human carbonic anhydrase isoforms I, II, IX, XII with novel benzenesulfonamides incorporating pyrrole, pyrrolopyrimidine and fused pyrrolopyrimidine moieties (2014) Bioorganic and Medicinal Chemistry, 22 (14), pp. 3684-3695. Cited 42 times. http://www.journals.elsevier.com/bioorganic-and-medicinal-chemistry/ doi: 10.1016/j.bmc.2014.05.009 View at Publisher 19 Nasr, T., Bondock, S., Youns, M. Anticancer activity of new coumarin substituted hydrazide-hydrazone derivatives (2014) European Journal of Medicinal Chemistry, 76, pp. 539-548. Cited 159 times. www.elsevier.com/gb/html/detrevue.cfm?code=EJ doi: 10.1016/j.ejmech.2014.02.026 View at Publisher 20 Mohamed, K.O., Nissan, Y.M., El-Malah, A.A., Ahmed, W.A., Ibrahim, D.M., Sakr, T.M., Motaleb, M.A. Design, synthesis and biological evaluation of some novel sulfonamide derivatives as apoptosis inducers (2017) European Journal of Medicinal Chemistry, 135, pp. 424-433. Cited 12 times. http://www.journals.elsevier.com/european-journal-of-medicinal-chemistry/ doi: 10.1016/j.ejmech.2017.04.069 View at Publisher 21 Sakr, T.M., Khedr, M.A., Rashed, H.M., Mohamed, M.E. In silico-based repositioning of phosphinothricin as a novel technetium-99m imaging probe with potential anti-cancer activity (Open Access) (2018) Molecules, 23 (2), art. no. 496. Cited 8 times. http://www.mdpi.com/1420-3049/23/2/496/pdf doi: 10.3390/molecules23020496 View at Publisher 22 Al-Wabli, R.I., Sakr, T.M.M.H., Khedr, M.A., Selim, A.A., El-Rahman, M.A.E.-M.A., Zaghary, W.A. Platelet-12 lipoxygenase targeting via a newly synthesized curcumin derivative radiolabeled with technetium-99m (Open Access) (2016) Chemistry Central Journal, 10 (1), art. no. 73. Cited 14 times. http://www.journal.chemistrycentral.com/home/ doi: 10.1186/s13065-016-0220-x View at Publisher 23 Monforte, A.-M., Ferro, S., De Luca, L., Lo Surdo, G., Morreale, F., Pannecouque, C., Balzarini, J., (...), Chimirri, A. Design and synthesis of N1-aryl-benzimidazoles 2-substituted as novel HIV-1 non-nucleoside reverse transcriptase inhibitors (2014) Bioorganic and Medicinal Chemistry, 22 (4), pp. 1459-1467. Cited 20 times. doi: 10.1016/j.bmc.2013.12.045 View at Publisher 24 Assy, M.G. Reaction of acyl isothiocyanates with nucleophiles: A convenient synthesis of 1,3-oxazine, pyrimidinethione and thiazole derivatives (1996) Phosphorus, Sulfur and Silicon and Related Elements, 108 (1-4), pp. 15-20. Cited 12 times. http://www.tandf.co.uk/journals/titles/10426507.html doi: 10.1080/10426509608029633 View at Publisher 25 Mansuroĝlu, D.S., Arslan, H., Vanderveer, D., Binzet, G. Synthesis and characterization of N-(2,2-Diphenylacetyl)- N′-substituted thiourea derivatives: The crystal structure of N-(2,2-Diphenylacetyl)-N′-(4-chloro phenyl)-thiourea (2009) Phosphorus, Sulfur and Silicon and the Related Elements, 184 (12), pp. 3221-3230. Cited 11 times. doi: 10.1080/10426500902979743 View at Publisher 26 Skehan, P., Storeng, R., Scudiero, D., Monks, A., Mcmahon, J., Vistica, D., Warren, J.T., (...), Boyd, M.R. New colorimetric cytotoxicity assay for anticancer-drug screening (1990) Journal of the National Cancer Institute, 82 (13), pp. 1107-1112. Cited 7673 times. doi: 10.1093/jnci/82.13.1107 View at Publisher 27 Payton, M., Chung, G., Yakowec, P., Wong, A., Powers, D., Xiong, L., Zhang, N., (...), Coats, S. Discovery and evaluation of dual CDK1 and CDK2 inhibitors (Open Access) (2006) Cancer Research, 66 (8), pp. 4299-4308. Cited 61 times. doi: 10.1158/0008-5472.CAN-05-2507 View at Publisher 28 Sakr, T.M., Sanad, M.H., Abd-Alla, W.H., Salama, D.H., Saleh, G.M. Radioiodinated esmolol as a highly selective radiotracer for myocardial perfusion imaging: In silico study and preclinical evaluation (2018) Applied Radiation and Isotopes, 137, pp. 41-49. www.elsevier.com/locate/apradiso doi: 10.1016/j.apradiso.2018.03.006 View at Publisher 29 Sakr, T.M., Ibrahim, I.T., Abd-Alla, W.H. Molecular modeling and preclinical evaluation of radioiodinated tenoxicam for inflammatory disease diagnosis (2018) Journal of Radioanalytical and Nuclear Chemistry, 316 (1), pp. 233-246. www.wkap.nl/journalhome.htm/0236-5731 doi: 10.1007/s10967-018-5770-z View at Publisher 30 Swidan, M.M., Sakr, T.M., Motaleb, M.A., Abd El-Bary, A., El-Kolaly, M.T. Preliminary assessment of radioiodinated fenoterol and reproterol as potential scintigraphic agents for lung imaging (2015) Journal of Radioanalytical and Nuclear Chemistry, 303 (1), pp. 531-539. Cited 13 times. www.wkap.nl/journalhome.htm/0236-5731 doi: 10.1007/s10967-014-3328-2 View at Publisher 31 Chohan, T.A., Qian, H., Pan, Y., Chen, J.-Z. Cyclin-dependent kinase-2 as a target for cancer therapy: Progress in the development of CDK2 inhibitors as anti-cancer agents (2015) Current Medicinal Chemistry, 22 (2), pp. 237-263. Cited 67 times. http://www.benthamscience.com/contents-JCode-CMC-Vol-00000019-Iss-00000006.htm 32 Yin, X., Yu, J., Zhou, Y., Wang, C., Jiao, Z., Qian, Z., Sun, H., (...), Chen, B. Identification of CDK2 as a novel target in treatment of prostate cancer (2018) Future Oncology, 14 (8), pp. 709-718. Cited 7 times. http://www.futuremedicine.com/loi/fon doi: 10.2217/fon-2017-0561452068https://doi.org/10.1016/j.bioorg.2020.103577PubMed ID31978683https://t.ly/GgrmbMSA Google ScholarSCOPUSA new series of thiazolidinone (5a-g), thiazinone (9a-g) and dithiazepinone (9a-g) heterocycles bearing a benzenesulfonamide scaffold was synthesized. Cytotoxicity of these derivatives was assessed against MCF-7, HepG2, HCT-116 and A549 cancer cell lines and activity was compared to the known cytotoxic agents doxorubicin and 5-FU where the most active compounds displayed better to nearly similar IC50 values to the reference compounds. For assessing selectivity, the most active derivatives against MCF-7, 5b, 5c and 5e, were also assessed against the normal breast cell line MCF-10 A where they demonstrated high selective cytotoxicity to cancerous cells over that to normal cells. Further, the effect of the most active compounds 5b-e on MCF-7 and HepG2 cell cycle phase distribution was assessed and the tested sulfonamide derivatives were found to induce accumulation of cells in the <2n phase. To further confirm apoptosis induction, caspase 8 and 9 levels in MCF-7 and HepG2 were evaluated before and after treatment with compounds 5b-e and were found to be significantly higher after exposure to the test agents. Since 5c was the most active, its effect on the cell cycle regulation was confirmed where it showed inhibition of the CDK2/cyclin E1. Finally, in vivo biodistribution study using radioiodinated-5c revealed a significant uptake and targeting ability into solid tumor in a xenograft mouse model. © 2020 Elsevier Inc.en-USEMTREE medical terms: A-549 cell lineanimal tissueArticlecell cycle arrestcell cycle regulationcell viabilitycontrolled studydrug cytotoxicitydrug designdrug screeningdrug synthesisHCT 116 cell lineHep-G2 cell linehumanhuman cellIC50isotope labelingmaleMCF-7 cell linemousenonhumanpriority journalproapoptotic activityproton nuclear magnetic resonanceradioactivityEMTREE drug terms: 2 chloro n (4 sulfamoylphenyl)acetamide4 (2 imino 6 oxo 6,7 dihydro 1,3,5 dithiazepin 4 ylamino)benzenesulfonamide4 (4 oxo 4,5 dihydrothiazol 2 ylamino)benzenesulfonamide4 (4 oxo 5,6 dihydro 4h 1,3 thiazin 2 ylamino)benzenesulfonamide4 (5 benzylidene 4 oxo 4,5 dihydrothiazol 2 ylamino)4 (5 benzylidene 4 oxo 5,6 dihydro 4h 1,3 thiazin 2 ylamino)benzenesulfonamide4 (7 benzylidene 2 imino 6 oxo 6,7 dihydro 1,3,5 dithiazepin 4 ylamino)benzenesulfonamide4 [2 imino 7 (4 methoxybenzylidene) 6 oxo 6,7 dihydro 1,3,5 dithiazepin 4 ylamino]benzenesulfonamide4 [5 (4 bromobenzylidene) 4 oxo 4,5 dihydrothiazol 2 ylamino]benzenesulfonamide4 [5 (4 bromobenzylidene) 4 oxo 5,6 dihydro 4h 1,3 thiazin 2 ylamino]benzenesulfonamide4 [5 (4 chlorobenzylidene) 4 oxo 4,5 dihydrothiazol 2 ylamino]benzenesulfonamide4 [5 (4 chlorobenzylidene) 4 oxo 5,6 dihydro 4h 1,3 thiazin 2 ylamino]benzenesulfonamide4 [5 (4 fluorobenzylidene) 4 oxo 4,5 dihydrothiazol 2 ylamino]benzenesulfonamide4 [5 (4 fluorobenzylidene) 4 oxo 5,6 dihydro 4h 1,3 thiazin 2 ylamino]benzenesulfonamide4 [5 (4 hydroxybenzylidene) 4 oxo 4,5 dihydrothiazol 2 ylamino]benzenesulfonamide4 [5 (4 hydroxybenzylidene) 4 oxo 5,6 dihydro 4h 1,3 thiazin 2 ylamino]benzenesulfonamide4 [5 (4 methoxybenzylidene) 4 oxo 4,5 dihydrothiazol 2 ylamino]benzenesulfonamide4 [5 (4 methoxybenzylidene) 4 oxo 5,6 dihydro 4h 1,3 thiazin 2 ylamino]benzenesulfonamide4 [5 [4 (bimethylamino)benzylidene] 4 oxo 4,5 dihydrothiazol 2 ylamino]benzenesulfonamide4 [5 [4 (dimethylamino)benzylidene] 4 oxo 5,6 dihydro 4h 1,3 thiazin 2 ylamino]benzenesulfonamide4 [7 (4 bromobenzylidene) 2 imino 6 oxo 6,7 dihydro 1,3,5 dithiazepin 4 ylamino]benzenesulfonamide4 [7 (4 chlorobenzylidene) 2 imino 6 oxo 6,7 dihydro 1,3,5 dithiazepin 4 ylamino]benzenesulfonamide4 [7 (4 fluorobenzylidene) 2 imino 6 oxo 6,7 dihydro 1,3,5 dithiazepin 4 ylamino]benzenesulfonamide4 [7 (4 hydroxybenzylidene) 2 imino 6 oxo 6,7 dihydro 1,3,5 dithiazepin 4 ylamino]benzenesulfonamide4 [7 [4 (dimethylamino)benzylidene] 2 imino 6 oxo 6,7 dihydro 1,3,5 dithiazepin 4 ylamino]benzenesulfonamidebenzenesulfonamide derivativecytotoxic agentdoxorubicinfluorouracilunclassified drugunindexed drugCytotoxicityCell cycle phase distribution analysisCaspase 8 and 9 levelsBenzenesulfonamide scaffold-based derivativesNew benzenesulfonamide scaffold-based cytotoxic agents: Design, synthesis, cell viability, apoptotic activity and radioactive tracing studiesArticlehttps://doi.org/10.1016/j.bioorg.2020.103577PubMed ID31978683