MOSTAFA, YASSER SALAMRI, SAAD AALRUMMAN, SULIMAN ATAHA, TAREK HHASHEM, MOHAMEDMOUSTAFA, MAHMOUDFAHMY, LAMIAA I2021-09-252021-09-252021-09MOSTAFA, Y. S., ALAMRI, S. A., ALRUMMAN, S. A., TAHA, T. H., HASHEM, M. et al. (2021). Biosynthesis of raw starch degrading β-cyclodextrin glycosyltransferase by immobilized cells of Bacillus licheniformis using potato wastewater. BIOCELL, 45(6), 1661–1672.https://doi.org/10.32604/biocell.2021.016193https://qrgo.page.link/Az7cyScopusThe study was sought to enhance the synthesis of thermal stable β-cyclodextrin glycosyltransferase (β-CGTase) using potato wastewater as a low-cost medium and assess the degree to which it is efficient for industrial production of β-cyclodextrin (β-CD) from raw potato starch. Thermophilic bacteria producing β-CGTase was isolated from Saudi Arabia and the promising strain was identified as Bacillus licheniformis using phylogenetic analysis of the 16S rRNA gene. Alginate-encapsulated cultures exhibited twice-fold of β-CGTase production more than free cells. Scanning electron microscopy (SEM) of polymeric capsules indicated the potential for a longer shelf-life, which promotes the restoration of activity in bacterial cells across semi-continuous fermentation of β-CGTase production for 252 h. The optimal conditions for β-CGTase synthesis using potato wastewater medium were at 36 h, pH of 8.0, and 50°C with 0.4% potato starch and 0.6% yeast extract as carbon and nitrogen sources, respectively. The purified enzyme showed a specific activity of 63.90 U/mg with a molecular weight of ∼84.6 kDa as determined by SDS-PAGE analysis. The high enzyme activity was observed up to 60°C, and complete stability was achieved at 75°C. High levels of activity and stability were shown at pH 8.0, and the pH range from 7.0–10.0, respectively. The enzyme has an appreciable affinity for raw potato starch with a Km of 5.7 × 10−6 M and a Vmax of 87.71 µmoL/mL/min. β-CD production was effective against 25 U/g of raw potato starch. The outcomes demonstrated its feasibility to develop a fermentation process by integrating the cost-effective production of β-CGTase having distinctive properties for β-CD production with eco- friendly utilization of potato wastewater.en-USPotato wastewaterBacillus licheniformisβ-CGTase16S rDNA geneSemi-continuous fermentationβ-cyclodextrinBiosynthesis of raw starch degrading B-cyclodextrin glycosyltransferase by immobilized cells of Bacillus licheniformis using potato wastewaterArticlehttps://doi.org/10.32604/biocell.2021.016193