Salem, MAGedik, MBrown, A2020-02-082020-02-082015Ai, H. W., Shaner, N. C., Cheng, Z., Tsien, R. Y., & Campbell, R. E. (2007). Biochemistry, 46, 5904.CrossRefGoogle Scholar Ai, Y., Tian, G., & Luo, Y. (2013). Molecular Physics, 111, 1316.CrossRefGoogle Scholar Aidas, K., Angeli, C., Bak, K. L., Bakken, V., Bast, R., Boman, L., Christiansen, O., Cimiraglia, R., Coriani, S., Dahle, P., Dalskov, E. K., Ekstrm, U., Enevoldsen, T., Eriksen, J. J., Ettenhuber, P., Fernndez, B., Ferrighi, L., Fliegl, H., Frediani, L., Hald, K., Halkier, A., Httig, C., Heiberg, H., Helgaker, T., Hennum, A. C., Hettema, H., Hjertens, E., Hst, S., Hyvik, I.-M., Iozzi, M. F., Jansik, B., Jensen, H. J. Aa., Jonsson, D., Jrgensen, P., Kauczor, J., Kirpekar, S., Kjrgaard, T., Klopper, W., Knecht, S., Kobayashi, R., Koch, H., Kongsted, J., Krapp, A., Kristensen, K., Ligabue, A., Lutns, O. B., Melo, J. I., Mikkelsen, K. V., Myhre, R. H., Neiss, C., Nielsen, C. B., Norman, P., Olsen, J., Olsen, J. M. H., Osted, A., Packer, M. J., Pawlowski, F., Pedersen, T. B., Provasi, P. F., Reine, S., Rinkevicius, Z., Ruden, T. A., Ruud, K., Rybkin, V., Salek, P., Samson, C. C. M., Snchez de Mers, A., Saue, T., Sauer, S. P. A., Schimmelpfennig, B., Sneskov, K., Steindal, A. H., Sylvester-Hvid, K. O., Taylor, P. R., Teale, A. M., Tellgren, E. I., Tew, D. P., Thorvaldsen, A. J., Thgersen, L., Vahtras, O., Watson, M. A., Wilson, D. J. D., Ziolkowski, M., & Ågren, H. (2014). The Dalton quantum chemistry program system. WIREs Computational Molecular Science, 4, 269–284.Google Scholar Alemán, E. A., de Silva, C., Patrick, E. M., Musier-Forsyth, K., & Rueda, D. (2014). Journal of Physical Chemistry Letters, 5, 777.CrossRefGoogle Scholar Bartlett, R. J. (2010). Molecular Physics, 108, 2905.CrossRefGoogle Scholar Becke, A. D. (1988). Physical Review A, 38, 3098.CrossRefGoogle Scholar Becke, A. D. (1993). Journal of Chemical Physics, 98, 5648.CrossRefGoogle Scholar Beerepoot, M. T. P., Friese, D. H., & Ruud, K. (2014). Physical Chemistry Chemical Physics, 16, 5958.CrossRefGoogle Scholar Beerepoot, M. T. P., Friese, D. H., List, N. H., Kongsted, J., & Ruud, K. (2015). Physical Chemistry Chemical Physics, 17, 19306.CrossRefGoogle Scholar Campbell, R. E., & Davidson, M. W. (2010). In Molecular Imaging with Reporter Genes (pp. 3–40). Cambridge University Press.Google Scholar Chakrabarti, S., & Ruud, K. (2009a). Physical Chemistry Chemical Physics, 11, 2592.CrossRefGoogle Scholar Chakrabarti, S., & Ruud, K. (2009b). Journal of Physical Chemistry A, 113, 5485.CrossRefGoogle Scholar Chalfie, M., Tu, Y., Euskirchen, G., Ward, W. W., & Prasher, D. (1994). Science, 263, 802.CrossRefGoogle Scholar Christiansen, O., Koch, H., & Jørgensen, P. (1995a). Journal of Chemical Physics, 103, 7429.CrossRefGoogle Scholar Christiansen, O., Koch, H., & Jørgensen, P. (1995b). Chemical Physics Letters, 243, 409.CrossRefGoogle Scholar Ciuciu, A. I., Firmansyah, D., Hugues, V., Blanchard-Desce, M., Gryko, D. T., & Flamigni, L. (2014). Journal of Materials Chemistry C, 2, 4552.CrossRefGoogle Scholar Cronstrand, P., Luo, Y., & Ågren, H. (2005). Advances in Quantum Chemistry, 50, 1.CrossRefGoogle Scholar Denk, W., Strickler, J., & Webb, W. (1990). Science, 248, 73.CrossRefGoogle Scholar Drobizhev, M., Tillo, S., Makarov, N. S., Hughes, T. E., & Rebane, A. (2009). Journal of Physical Chemistry B, 113, 12860.CrossRefGoogle Scholar Drobizhev, M., Makarov, N. S., Tillo, S. E., Hughes, T. E., & Rebane, A. (2011). Nature Methods, 8, 393.CrossRefGoogle Scholar Drobizhev, M., Callis, P. R., Nifosì, R., Wicks, G., Stoltzfus, C., Barnett, L., Hughes, T. E., Sullivan, P., & Rebane, A. (2015). Science Reports, 5, 13223.CrossRefGoogle Scholar Epifanovsky, E., Polyakov, I., Grigorenko, B., Nemukhin, A., & Krylov, A. I. (2009). Journal of Chemical Theory and Computation, 5, 1895.CrossRefGoogle Scholar Frediani, L., Rinkevicius, Z., & Ågren, H. (2005). Journal of Chemical Physics, 122, 244104.CrossRefGoogle Scholar Friese, D. H., Hattig, C., & Ruud, K. (2012). Physical Chemistry Chemical Physics, 14, 1175.CrossRefGoogle Scholar Gedik, M., & Brown, A. (2013). Journal of Photochemistry and Photobiology A: Chemistry A, 259, 25.CrossRefGoogle Scholar Goppert-Mayer, M. (1931). Annals of Physics, 9, 273.CrossRefGoogle Scholar Gross, L. A., Baird, G. S., Hoffman, R. C., Baldridge, K. K., & Tsien, R. Y. (2000). Proceedings of the National Academy of Sciences of the United States of America, 97, 11990.CrossRefGoogle Scholar Ha, T. (2004). Biochemistry, 43, 4055.CrossRefGoogle Scholar Hättig, C., Christiansen, O., & Jørgensen, P. (1998). Journal of Chemical Physics, 108, 8331.CrossRefGoogle Scholar Hosoi, H., Yamaguchi, S., Mizuno, H., Miyawaki, A., & Tahara, T. (2008). Journal of Physical Chemistry B, 112, 2761.CrossRefGoogle Scholar Iikura, H., Tsuneda, T., Yanai, T., & Hirao, K. (2001). Journal of Chemical Physics, 115, 3540.CrossRefGoogle Scholar Inouye, S., & Tsuji, F. I. (1994). FEBS Letters, 341, 277.CrossRefGoogle Scholar Kaiser, W., & Garrett, C. G. B. (1961). Physical Review Letters, 7, 229.CrossRefGoogle Scholar Kamarchik, E., & Krylov, A. I. (2011). Journal of Physical Chemistry Letters, 2, 488.CrossRefGoogle Scholar Katilius, E., & Woodbury, N. W. (2006). Journal of Biomedial Optics, 11, 044004.CrossRefGoogle Scholar Kawano, H., Kogure, T., Abe, Y., Mizuno, H., & Miyawaki, A. (2008). Nature Methods, 5, 373.CrossRefGoogle Scholar Kikuchi, A., Fukumura, E., Karasawa, S., Mizuno, H., Miyawaki, A., & Shiro, Y. (2008). Biochemistry, 47, 11573.CrossRefGoogle Scholar Koch, H., Christiansen, O., Jørgensen, P., Sanchez de Merás, A. M., & Helgaker, T. (1997). Journal of Chemical Physics, 106, 1808.CrossRefGoogle Scholar Kristensen, K., Kauczor, J., Thorvaldsen, A. J., Jørgensen, P., Kjærgaard, T., & Rizzo, A. (2011). Journal of Chemical Physics, 134, 214104.CrossRefGoogle Scholar Krylov, A. I., & Gill, P. M. (2013). WIREs Computational Molecular Science, 3, 317.CrossRefGoogle Scholar Lane, R. S. K., & Magennis, S. W. (2012). RSC Advances, 2, 11397.CrossRefGoogle Scholar Lane, R. S. K., Jones, R., Sinkeldam, R. W., Tor, Y., & Magennis, S. W. (2014). ChemPhysChem, 15, 867.CrossRefGoogle Scholar Lee, C., Yang, W., & Parr, R. G. (1988). Physical Review B, 37, 785.CrossRefGoogle Scholar List, N. H., Olsen, J. M. H., Jensen, H. J. A., Steindal, A. H., & Kongsted, J. (2012). Journal of Physical Chemistry Letters, 3, 3513.CrossRefGoogle Scholar Matsika, S. (2015). Topics in Current Chemistry, 355, 209.CrossRefGoogle Scholar Meath, W. J., & Jagatap, B. N. (2011). Journal of Physics B, 44, 205401.CrossRefGoogle Scholar Meath, W. J., & Jagatap, B. N. (2013). Journal of Chemical Physics, 139, 144104.CrossRefGoogle Scholar Meath, W. J., Jagatap, B. N., & Kondo, A. E. (2006). Journal of Physics B, 39, S605.CrossRefGoogle Scholar Morales, A. R., Frazer, A., Woodward, A. W., Ahn-White, H. Y., Fonari, A., Tongwa, P., Timofeeva, T., & Belfield, K. D. (2013). Journal of Organic Chemistry, 78, 1014.CrossRefGoogle Scholar Nanda, K. D., & Krylov, A. I. (2015). Journal of Chemical Physics, 142, 064118.CrossRefGoogle Scholar Nayyar, I. H., & Tretiak, S. (2013). Journal of Physical Chemistry C, 117, 18170.CrossRefGoogle Scholar Nifosì, R., & Luo, Y. (2007a). Journal of Physical Chemistry B., 111, 14043.CrossRefGoogle Scholar Nifosì, R., & Luo, Y. (2007b). Journal of Physical Chemistry B, 111, 505.CrossRefGoogle Scholar Nifosì, R., & Tozzini, V. (2012). In G. Jung (Ed.), Fluorescent proteins I (Springer series on fluorescence, Vol. 11, pp. 3–40). Berlin/Heidelberg: Springer.Google Scholar Olsen, J., & Jørgensen, P. (1985). Journal of Chemical Physics, 82, 3235.CrossRefGoogle Scholar Olsen, J. M., Aidas, K., & Kongsted, J. (2010). Journal of Chemical Theory and Computation, 6, 3721.CrossRefGoogle Scholar Ormo, M., Cubitt, A. B., Kallio, K., Gross, L. A., Tsien, R. Y., & Remington, S. (1996). Science, 273, 1392.CrossRefGoogle Scholar Oulianov, D., Tomov, I., Dvornikov, A., & Rentzepis, P. (2001). Optics Communication, 191, 235.CrossRefGoogle Scholar Paterson, M. J., Christiansen, O., Pawłowski, F., Jørgensen, P., Hättig, C., Helgaker, T., & Sałek, P. (2006). Journal of Chemical Physics, 124, 054322.CrossRefGoogle Scholar Pawlicki, M., Collins, H., Denning, R., & Anderson, H. (2009). Angewandte Chemie International Edition, 48, 3244.CrossRefGoogle Scholar Pitchiaya, S., Heinicke, L. A., Custer, T. C., & Walter, N. G. (2014). Chemistry Reviews, 114, 3224.CrossRefGoogle Scholar Polyakov, I. V., Grigorenko, B. L., Epifanovsky, E. M., Krylov, A. I., & Nemukhin, A. V. (2010). Journal of Chemical Theory and Computation, 6, 2377.CrossRefGoogle Scholar Prasher, D. C., Eckenrode, V. K., Ward, W. W., Prendergast, F. G., & Cormier, M. J. (1992). Gene, 111, 229.CrossRefGoogle Scholar Runge, E., & Gross, E. K. U. (1984). Physical Review Letters, 52, 997.CrossRefGoogle Scholar Sałek, P., Vahtras, O., Guo, J., Luo, Y., Helgaker, T., & Ågren, H. (2003). Chemical Physical Letters, 374, 446.CrossRefGoogle Scholar Salem, M. A., & Brown, A. (2014). Journal of Chemical Theory and Computation, 10, 3260.CrossRefGoogle Scholar Salem, M. A., & Brown, A. (2015). Physical Chemistry Chemical Physics, 17, 25563.CrossRefGoogle Scholar Samanta, P. K., & Pati, S. K. (2015). Physical Chemistry Chemical Physics, 17, 10053.CrossRefGoogle Scholar Samanta, P. K., Manna, A. K., & Pati, S. K. (2012). Journal of Physical Chemistry B, 116, 7618.CrossRefGoogle Scholar Schmidt, M. W., Baldridge, K. K., Boatz, J. A., Elbert, S. T., Gordon, M. S., Jensen, J. H., Koseki, S., Matsunaga, N., Nguyen, K. A., Su, S. J., Windus, T. L., Dupuis, M., & Montgomery, J. A. (1993). Journal of Computational Chemistry, 14, 1347.CrossRefGoogle Scholar Shaner, N. C., Campbell, R. E., Steinbach, P. A., Giepmans, B. N. G., Palmer, A. E., & Tsien, R. Y. (2004). Nature Biotechnology, 22, 1567.CrossRefGoogle Scholar Shaner, N. C., Steinbach, P. A., & Tsien, R. Y. (2005). Nature Methods, 2, 905.CrossRefGoogle Scholar Shao, Y., Gan, Z., Epifanovsky, E., Gilbert, A. T., Wormit, M., Kussmann, J., Lange, A. W., Behn, A., Deng, J., Feng, X., Ghosh, D., Goldey, M., Horn, P. R., Jacobson, L. D., Kaliman, I., Khaliullin, R. Z., Kuś, T., Landau, A., Liu, J., Proynov, E. I., Rhee, Y. M., Richard, R. M., Rohrdanz, M. A., Steele, R. P., Sundstrom, E. J., Woodcock, H. L., III, Zimmerman, P. M.,1875-1893https://cutt.ly/irDp0RbMSA Google ScholarTwo-photon absorption (TPA) leads to higher-energy excited electronic states via the simultaneous absorption of two photons. In TPA, the absorption is directly proportional to the square of incident light intensity, and thus lasers are required for excitation. The advantages of TPA microscopy include better focus and less out-of-focus bleaching, together with absorption at longer wavelengths than in one-photon absorption, which leads to deeper penetration in scattering media, such as tissues. However, TPA probes are usually associated with less sensitivity, and thus designing TPA fluorophores with large absorption probability is an important area of research. TPA of biological molecules like fluorescent proteins and nucleic acids is of particular interest. These molecules are experimentally produced through utilization of the naturally present transcription mechanism in the cell and thus pose less cell toxicity. In this chapter, we review the theory of TPA highlighting the computational approaches used to study biological molecules. We discuss the computational methods available for exploring TPA and recent computational studies on the TPA of fluorescent proteins and nucleic acid base analogues. The chapter concludes by highlighting possible research avenues and unanswered questions.enAbsorptionBiological MoleculesTwo Photon Absorption in Biological MoleculesArticle