Rida, SZAbdel Rady, ASArafa, AAMKhalil, M2020-01-292020-01-292012[1] G. Abramson, V.M. Kenkre, Spatio-temporal patterns in the Hantavirus infection, Phys. Rev. E 66 (2002) 011912. [2] G. Abramson, V.M. Kenkre, T.L. Yates, B.R. Parmenter, Traveling waves of infection in the Hantavirus epidemics, Bull. Math. Biol. 65 (2003) 519–534. [3] G. Abramson, Mathematical modeling of Hantavirus : From the mean field to the individual level, Progress in Mathematical Biology Research, Nova Science Publishers, Inc. (2007). [4] Aguirre, M.A., Abramson, G., Bishop, A.R. and Kenkre, V.M., Simulations in the mathematical modeling of the spread of the Hantavirus, Phys. Rev. E 66, 041908 (2002).A.H. Nayfeh, Perturbation Methods, John Wiley, New York, 1973. [5] A.A.M. Arafa, S.Z. Rida and M. Khalil, Fractional modeling dynamics of HIV and CD4+ T-cells during primary infection, Nonlinear Biomedical Physics 6( 2012) 1-7. Fractional-order model of Hantavirus 99 [6] A.A.M. Arafa, S.Z. Rida and M. Khalil, Fractional Order Model of Human T-cell Lymphotropic Virus I (HTLV-I) Infection of CD4+T-cells, Advanced Studies in Biology, 3(2011) 347 – 353. [7] S. Busenberg, P. van den Driessche, Analysis of a disease transmission model in a population with varying size, J. Math. Biol. 28 (1990) 257–270. [8] K.S. Cole, Electric conductance of biological systems, in: Proc. Cold Spring Harbor Symp. Quant. Biol, Cold Spring Harbor, New York, (1993) 107-116. [9] K. Diethelm and G. Walz, Numerical solution for fractional differential equations by extrapolation, Numerical algoritms ,16 (1997) 231–253. [10] A.M.A. El-Sayed, S.Z. Rida, A.A.M. Arafa, On the Solutions of Timefractional Bacterial Chemotaxis in a Diffusion Gradient Chamber, International Journal of Nonlinear Science , 7(2009) 485–492. [11] A.M.A. El-Sayed, S.Z. Rida, A.A.M. Arafa, Exact Solutions of FractionalOrder Biological Population Model, Commun. Theor. Phys. 52 (2009) 992– 996. [12] A.M.A. El-Sayed, A. E. M. El-Mesiry, and H. A. A. El-Saka, Numerical solution for multi-term fractional (arbitrary) orders differential equations, Comput. Appl. Math., 23(2004)33–54. [13] S.M. Goh, A.I.M. Ismail, M.S.M. Noorani, I. Hashim, Dynamics of the Hantavirus infection through variational iteration method, Nonlinear Analysis: Real World Applications, 10 (2009) 2171–2176. [14] I. Hashim, O. Abdulaziz, S. Momani, Homotopy analysis method for fractional IVPs, Communications in Nonlinear Science and Numerical Simulation 14 (2009) 674–684. [15]O.D. Makinde, Adomian decomposition approach to a SIR epidemic model with constant vaccination strategy, App. Math. comput., 184 (2007) 842– 848. [16] Mehmet Merdan, Homotopy perturbation method for solving a model for HIV infection of CD T cells, İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi, 6 (2007) 59–62. [17]S.Z. Rida, H.M. El-Sherbiny, A.A.M. Arafa, On the solution of the fractional nonlinear Schrödinger equation, Physics Letters A, 372 (2008) 553–558. [18] Z. Odibat and N. Shawagfeh, Generalized Taylor’s formula, Appl. Math. Comput. 186 (2007) 286–293.https://t.ly/0MmOgMSA Google ScholarIn this paper, fractional-order model of the Hantavirus infection in terms of simple differential equations involving the mice population is presented. A study of the effect of changes in ecological conditions and diversity of habitats can be observed by varying the value of the environmental parameter . Generalized Euler method (GEM) is considered in this paper to obtain an analytic approximate solution of this model.enGeneralized Euler method,Fractional order ordinary differential equations,Hantavirus fractional-order model.The effect of the environmental parameter on the Hantavirus infection through a fractional-order SI modelArticle