Ezzat, Shahira MM. Abdallah, HossamSalah El Dine, RihamAbdel-Sattar, EssamB. Abdel-Naim, Ashraf2019-10-212019-10-212013Adnyana, I.K., Tezuka, Y., Banskota, A.H., Tran, S., Kadota, K.Q., 2001. Three new triterpenes from the seeds of Combretum quadrangulare and their hepatoprotective activity. J. Nat. Prod. 64, 360–363. Chattopadhyay, R.R., 2003. Possible mechanism of hepatoprotective activity of Azadirachta indica leaf extract, Part II. J. Ethnopharmacol. 89, 217–219. Chaudhuri, P.K., Tripathi, A.K., 1989. Insect feeding deterrent from Echinops echinatus against Spilosoma obliqua Walker. Entomon 14, 99–100. Dawidar, A.M., Metwally, M.A., Abou-Elzahab, M., Abdel-Mogib, M., 1990. Sesquiterpene lactones from Echinops spinosissimus. Pharmazie 45, 70–71. Dong, M., Cong, B., Yu, S.H., Sauriol, F., Huo, C.H., Shi, Q.W., Gu, Y.C., Zamir, L.O., Kiyota, H., 2008. Echinopines A and B: sesquiterpenoids possessing an unprecedented skeleton from Echinops spinosus. Org. Lett. 10, 701–704. El Sayed, K.A., 2001. Pseudoguaiane sesquiterpene xylopyranoside from Echinops hussoni. Pharmazie 56, 415–417. Fokialakis, N., Cantrell, C.L., Duke, S.O., Skaltsounis, A.L., Wedge, D.E., 2006. Antifungal activity of thiophenes from Echinops ritro. J. Agric. Food Chem. 54, 1651–1655. Groneberg, D.A., Grosee-Siestrup, C., Fische, A., 2002. In vitro models to study hepatotoxicity. Toxicol. Pathol. 30, 394–399. Goad, L.J., Akihisa, T., 1997. Analysis of Sterols. Blackie Academic and Professional, UK. Hymete, A., Rohloff, J., Kjøsen, H., Iversen, T.H., 2005. Acetylenic thiophenes from the roots of Echinops ellenbeckii from Ethiopia. Nat. Prod. Res. 19, 755–761. Hui-Zheng, X., Zhi-Zhen, L., Chohachi, K., Soejarto, D.D., Cordell, G.A., Fong, H., Hodgson, W., 1988. 3b-(3,4-Dihydroxycinnamoyl)-erythrodiol and 3b-(4- hydroxycinnamoyl)-erythrodiol from Larrea tridentata. Phytochemistry 27, 233–235. Iijima, K., Kiyohara, H., Tanaka, M., Matsumoto, T., Cyong, J.C., Yamada, H., 1995. Preventive effect of taraxasteryl acetate from Inula britannica subsp. japonica on experimental hepatitis in vivo. Planta Med. 61, 50–53. Jin, W., Shi, Q., Hong, C., Cheng, Y., Ma, Z., Qu, H., 2008. Cytotoxic properties of thiophenes from Echinops grijissi Hance. Phytomedicine 15, 768–774. Koike, K.K., Jia, Z.H., Nikaido, T., Liu, Y., Zhao, Y.Y., Guo, D.A., 1999. Echinothiophene, a novel benzothiophene glycoside from the roots of Echinops grijissii. Org. Lett. 1, 197–198. Lin, C.C., Lin, C.H., 1993. Pharmacological and pathological studies on Taiwan folk medicine (IX): the hepatoprotective effect of the methanolic extract from Echinops Grijisii. Am. J. Chin. Med. 21, 33–44. Liu, J., Liu, Y., Mao, Q., Klaassen, C.D., 1994. The effects of 10 triterpenoid compounds on experimental liver injury in mice. Fundam. Appl. Toxicol. 22, 34–40. Li, L.B., Ren, J., Cheng, Z.M., Zhu, H.J., 2010. Three new sesquiterpenoids from Echinops ritro L. Helv. Chim. Acta 93, 1344–1349. Maeda, K., Naitou, T., Umishio, K., Fukuhara, T., Motoyama, A., 2007. A novel melanin inhibitor: hydroperoxy traxastane-type triterpene from flowers of Arnica montana. Biol. Pharm. Bull. 30, 873–879. Mahato, S.B., Kundu, A.P., 1994. 13C NMR spectra of pentacyclic triterpinoids—a compilation and some salient features. Phytochemistry 37, 1517–1575. Mabry, T.J., Markham, K.R., Thomas, M.B., 1970. The Systematic Identification of Flavonoids. Springer Verlag, Berlin. Marklund, S., Marklund, G., 1974. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur. J. Biochem. 47, 469–474. Marzouk, A.M., 2009. Hepatoprotective triterpenes from hairy root cultures of Ocimum basilicum L. Z. Naturforsch. C 64, 201–209. Metwally, M.A., 1987. Egyptian compositae. Part 10. Triterpenes from Echinops spinosissimus. Pak. J. Sci. Ind. Res. 30, 18–19. Miura, N., Matsumoto, Y., Miyairi, S., Nishiyama, S., Naganuma, A., 1999. Protective effects of triterpene compounds against the cytotoxicity of cadmium in HepG2 cells. Mol. Pharmacol. 56, 1324–1328. Nakano, H., Cantrell, C.L., Mamonov, L.K., Osbrink, W.L., Ross, S.A., 2011. Echinopsacetylenes A and B, new thiophenes from Echinops transiliensis. Org. Lett. 13, 6228–6231. Ohkawa, H., Ohishi, N., Yagi, K., 1979. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 95, 351–358. Papadopoulou, P., Couladis, M., Tzakou, O., 2006. Essential oil composition of two Greek Echinops species: Echinops graecus Miller and Echinops ritro L. J. Essent. Oil Res. 18, 242–243. Petrovic, S.D., Gorunovic, M.S., Wray, V., Merfort, I., 1999. A taraxasterol derivative and phenolic compounds from Hieracium gymnocephalum. Phytochemistry 50, 293–296. Ram, S.N., Roy, R., Singh, B., Singh, R.P., Pandey, V.B., 1996. An acylflavone glucoside of Echinops echinatus flowers. Planta Med. 62, 187. Reitman, S., Frankel, S., 1957. A colorimetric method for the determination of serum glutamic oxalacetic and glutamic pyruvic transaminases. Am. J. Clin. Pathol. 28, 56–63. Savona, G., Bruno, M., Rodrı´guez, B., Marco, J.L., 1987. Triterpenoids from Salvia deserta. Phytochemistry 26, 3305–3308. Schmidt, T.J., Von Raison, J., Willuhn, G., 2004. New triterpene esters from flowerheads of Arnica lonchophylla. Planta Med. 70, 967–977. Shabana, M.M., El-Sherei, M.M., Moussa, M.Y., Sleem, A.A., Abdallah, H.M., 2007. Investigation of phenolic constituents of Carduncellus eriocephalus Boiss. var. albiflora Gauba and their biological activities. Nat. Prod. Commun. 8, 823–828. Singh, S., Upadhyay, R.K., Pandey, M.B., Singh, J.P., Pandey, V.B., 2006. Flavonoids of Echinops echinatus. J. Asian Nat. Prod. Res. 8, 197–200. Su, Y.F., Luo, Y., Guo, C.Y., Guo, D.A., 2004. Two new quinoline glycoalkaloids from Echinops gmelinii. J. Asian Nat. Prod. Res. 6, 223–227. Takholm, V., 1974. Student Flora of Egypt, 2nd ed. Cairo University, Cairo. Tene, M., Tane, P., Sondengam, B.L., Connolly, J.D., 2004. Lignans from the roots of Echinops giganteus. Phytochemistry 65, 2101–2105. Thabrew, M.I., Joice, P.D., Rajatissa, W.A., 1987. Comparative study of efficacy of Paetta indica and Osbeckia octandra in the treatment of liver dysfunction. Planta Med. 53, 239–241. Torres-Gonzalez, L., Munoz-Espinosa, L.E., Rivas-Estilla, A.M., Trujillo-Murillo, K., Salazar-Aranda, R., Waksman De Torres, N., Cordero-Perez, P., 2011. Protective effect of four Mexican plants against CCl4-induced damage on the Huh7 human hepatoma cell line. Ann. Hepatol. 10, 73–79. Wu, H.Y., Chang, C.I., Lin, B.W., Yu, F.L., Lin, P.Y., Hsu, J.L., Yen, C.H., Liao, M.H., Shih, W.L., 2011. Suppression of hepatitis B virus x protein-mediated tumorigenic effects by ursolic acid. J. Agric. Food Chem. 59, 1713–1722. Xiang, T., Xiong, Q.B., Ketut, A.I., Tezuka, Y., Nagaoka, T., Wu, L.J., Kadota, S., 2001. Studies on the hepatocyte protective activity and the structure–activity relationships of quinic acid and caffeic acid derivatives from the flower buds of Lonicera bournei. Planta Med. 67, 322–325. Yasukawa, K., Akihisa, T., Oinuma, H., Kasahara, Y., Kimura, Y., Yamanouchi, S., Kumaki, K., Tamura, T., Takido, M., 1996. Inhibitory effect of di- and trihydroxy triterpenes from the flowers of compositae on 12-O-tetradecanoylphorbol-13- acetate-induced inflammation in mice. Biol. Pharm. Bull. 19, 1329–1331. Yadava, R.N., Singh, S.K., 2006. New anti-inflammatory active flavanone glycoside from the Echinops echinatus Roxb. Indian J. Chem. B 45, 1004–1008.https://doi.org/https://cutt.ly/otwkNlbMSA Google ScholarPhytochemical investigation of the flowering aerial parts of Echinops galalensis (Asteraceae) led to the isolation of a new taraxasteryl triterpene, 3b-acetoxy-taraxast-12, 20(30)-diene-11a-21a-diol (1), together with nine known metabolites, a-amyrin (2), b-sitosterol (3), erythrodiol (4), lup-20(29)-ene- 1,3-diol (5), 1,5-dicaffeoylquinic acid (6), 3,5-dicaffeoylquinic acid (7), 3,4-dicaffeoylquinic acid (8), 4,5- dicaffeoylquinic acid (9) and apigenin-7-O-b-D-glucoside (10). The structure of the new compound was determined by comprehensive analyses of their 1D and 2D NMR, mass spectral (HR-EI) data and comparison with previously known analogs. The effect of the methanol extract of E. galalensis, its fractions as well as compounds (1–10) on human hepatoma cell line (Huh7) was evaluated according to aspartate aminotransferase (AST), alanine transaminase (ALT), superoxide dismutase (SOD) activities and malondialdehyde (MDA) level before and after exposure of the cells to carbon tetrachloride (CCl4). It was found that pre-treatment of human hepatoma cell line (Huh7) with the tested samples (100 mg/ml) prior to CCl4 challenge protected against cell injury. The protective effect of E. galalensis was suggested to be mediated, at least partly, by its antioxidant activity.enUniversity of Echinops galalensisHepatoprotectiveProtective effect of Echinops galalensis against CCl4-induced injury on the human hepatoma cell line (Huh7)Articlehttps://doi.org/