Mohamed Gamal, AhmedMohamed Mahmoud, HossamAhmed Abd El-Khalek, NadaKhaled Ahmed Mohamed, Sohila2019-10-122019-10-122019Copyright © 2019 MSA University. All Rights Reserved.https://t.ly/LveemNanotechnology development started from 20th century. It has the ability to deliver a small molecular weight drugs also the ability to targeting to cells and tissues by macromolecules such as genes, peptides and proteins. A lot of problems are solved by the use of nanotechnology like lipophilic drugs by formulating them as nanoparticles, poorly soluble drugs by decreasing the drug reactions and improving bioavailability. Solid lipid nanoparticles (SLNs) are defined as colloidal particles which is characterized by small particle size, ability to change surface properties and large surface area that facilitates the bioavailability of poorly water soluble molecules also improving the penetration of the drug into the skin and providing the stability. Magnetic nanoparticles (MNPs) are a special type of NPs that is characterized by high magnetic susceptibility which validate it to be used in biomedical application. The particle size should be small and the MNPs must have a high magnetization to facilitate its motion in the blood vessels with an external magnetic field. Zolmitriptan is a selective serotonin receptor agonist which is effective in reducing migrane symptoms. The purpose of the study is to prepare supermagnetic solid lipid nanostructure lipid carrier of Zolmitriptan to enhance its bioavailability and to develop SLNs containing Zolmitriptan. The objectivities are achieving maximum bioavailability, achieving better solubility and achieving controlled sustained release of the drug. In this study, 6 formulas were prepared with different ratios and were evaluated for their particle size with a range of (205.8_ 469.5 d.nm) and zeta potential with a range of (-14.0_ -20 mv) and the entrapment efficiency were (58%_55%).Formula number 4 were the best as it had the slowest release.enOctober University for Modern Sciences and ArtsUniversity of Modern Sciences and ArtsMSA Universityجامعة أكتوبر للعلوم الحديثة والآدابPharmaceuticsNanotechnologyFormulation and characterization of novel supermagnetic solid lipid nanostructure lipid carrier in situ nasal gel for Zolmitriptan brain targeting (RS501 PT2.8)Other