Tawfik, Abdel NasserAbou El Dahab, Eiman2019-11-212019-11-212019-04Geoff Brumfiel, Nature 448, 245 (2007). CrossRefADSGoogle Scholar 2. S. Weinberg, Rev. Mod. Phys. 61, 1 (1989). CrossRefADSGoogle Scholar 3. A. G. Riess, et al., [Supernova search team collaboration], Astron. J. 116, 1009 (1998); S. Perlmutter, et al. [Supernova cosmology project collaboration], Astroph. J. 517, 565 (1999). CrossRefADSGoogle Scholar 4. J. D. Barrow and D. J. Shaw, Gen. Rel. Grav. 43, 2555 (2011). CrossRefADSGoogle Scholar 5. S. M. Carroll, W. H. Press, and E. L. Turner, Ann. Rev. Astron. Astrophys. 30, 499–542 (1992). CrossRefADSGoogle Scholar 6. N. Aghanim et al. (Planck Collaboration), “Planck 2018 results. VI. Cosmological parameters,” arXiv: 1807.06209 Google Scholar 7. Adam G. Riess et al., Astron. J. 116, 1009–1038 (1998). CrossRefADSGoogle Scholar 8. B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration), Phys. Rev. Lett. 116, 061102 (2016). MathSciNetCrossRefADSGoogle Scholar 9. L. A. Somlai and M. Vasuth, Int. J. Mod. Phys. D 27, 1850004 (2017); arXiv: 1606.09465. CrossRefGoogle Scholar 10. A. Ashtekar, B. Bonga, and A. Kesavan, Phys. Rev. Lett. 116, 051101 (2016). CrossRefADSGoogle Scholar 11. A. Ashtekar, Phys. Rev. Lett. 57, 2244 (1986). MathSciNetCrossRefADSGoogle Scholar 12. Simon D. M. White, Rep. Prog. Phys. 70, 883 (2007); arXiv: 0704.2291. CrossRefADSGoogle Scholar 13. I. Shipsey et al., “’Particle Physics and Astrophysics—A whitepaper in response to a call to the Astronomy and Astrophysics Community from the Committee on Astro2010 for State of the Profession Position Papers”, arXiv: 0904.0595. Google Scholar 14. C. L. Bennett, et al., Astrophys. J. Suppl. 148, 1 (2003); D. N. Spergel, et al., Astrophys. J. Suppl.148, 175 (2003); H. V. P. Peiris, et al., Astrophys. J. Suppl. 148, 213 (2003). CrossRefADSGoogle Scholar 15. P. Horava and D. Minic, Phys. Rev. Lett. 161085 (2000). Google Scholar 16. T. Abbott, et al. (DES Collaboration), MNRAS 460, 1270 (2016); arXiv: 1601.00329. CrossRefADSGoogle Scholar 17. Shuang Wang, Yi Wang, and Miao Li, Phys. Rep. 696, 1 (2017); arXiv: 1612.00345. MathSciNetCrossRefADSGoogle Scholar 18. R. R. Caldwell, R. Dave, and P. J. Steinhardt, Phys. Rev. Lett. 80, 1582 (1998). CrossRefADSGoogle Scholar 19. C. Wetterich, Nucl. Phys. B 302, 668 (1988). CrossRefADSGoogle Scholar 20. P. J. E. Peebles and B. Ratra, Astrophys. J. 325, L17 (1988). CrossRefADSGoogle Scholar 21. B. Ratra and P. J. E. Peebles, Phys. Rev. D 37, 3406 (1988). CrossRefADSGoogle Scholar 22. P. J. Steinhardt, L. M. Wang, and I. Zlatev, Phys. Rev. D 59, 123504 (1999). CrossRefADSGoogle Scholar 23. I. Zlatev and P. J. Steinhardt, Phys. Lett. B 459, 570 (1999). CrossRefADSGoogle Scholar 24. R. R. Caldwell, Phys. Lett. B 545, 23 (2002). CrossRefADSGoogle Scholar 25. R. R. Caldwell, M. Kamionkowski, and N. N. Weinberg, Phys. Rev. Lett. 91, 071301 (2003). CrossRefADSGoogle Scholar 26. S. M. Carroll, M. Hoffman, and M. Trodden, Phys. Rev. D 68, 023509 (2003). CrossRefADSGoogle Scholar 27. J. M. Cline, S. Y. Jeon, and G. D. Moore, Phys. Rev. D 70, 043543 (2004). CrossRefADSGoogle Scholar 28. C. Armendariz-Picon, V. Mukhanov, and P. J. Steinhardt, Phys. Rev. Lett. 85, 4438 (2000); Phys. Rev. D 63, 103510 (2001). CrossRefADSGoogle Scholar 29. T. Chiba, T. Okabe, and M. Yamaguchi, Phys. Rev. D 62, 023511 (2000). CrossRefADSGoogle Scholar 30. M. Malquarti, E. J. Copeland, and A. R. Liddle, Phys. Rev. D 68, 023512 (2003). CrossRefADSGoogle Scholar 31. M. Malquarti, E. J. Copeland, A. R. Liddle, and M. Trodden, Phys. Rev. D 67, 123503 (2003). MathSciNetCrossRefADSGoogle Scholar 32. H. Wei and R. G. Cai, Phys. Rev. D 71, 043504 (2005). CrossRefADSGoogle Scholar 33. B. Feng, X. L. Wang, and X. M. Zhang, Phys. Lett. B 607, 35 (2005). CrossRefADSGoogle Scholar 34. Z. K. Guo, Y. S. Piao, X. M. Zhang, and Y. Z. Zhang, Phys. Lett. B 608, 177 (2005). CrossRefADSGoogle Scholar 35. H. Wei and R. G. Cai, Phys. Lett. B 634, 9 (2006). CrossRefADSGoogle Scholar 36. Z. K. Guo, Y. S. Piao, X. M. Zhang, and Y. Z. Zhang, Phys. Rev. D 74, 127304 (2006). CrossRefADSGoogle Scholar 37. X. F. Zhang, H. Li, Y. S. Piao, and X. M. Zhang, Mod. Phys. Lett. A 21, 231 (2006). CrossRefADSGoogle Scholar 38. M. Z. Li, B. Feng, and X. M. Zhang, J. Cosmol. Astropart. Phys. 12, 002 (2005). CrossRefADSGoogle Scholar 39. X. F. Zhang and T. T. Qiu, Phys. Lett. B 642, 187 (2006). CrossRefADSGoogle Scholar 40. Y. F. Cai, H. Li, Y. S. Piao, and X. M. Zhang, Phys. Lett. B 646, 141 (2007). MathSciNetCrossRefADSGoogle Scholar 41. Y. F. Cai, M. Z. Li, J. X. Lu, Y. S. Piao, T. T. Qiu, and X. M. Zhang, Phys. Lett. B 651, 1 (2007). MathSciNetCrossRefADSGoogle Scholar 42. R. Lazkoz and G. Leon, Phys. Lett. B 638, 303 (2006). CrossRefADSGoogle Scholar 43. R. Lazkoz, G. Leon, and I. Quiros, Phys. Lett. B 649, 103 (2007). MathSciNetCrossRefADSGoogle Scholar 44. H. Wei, R. G. Cai, and D. F. Zeng, Class. Quantum Grav. 22, 3189 (2005). CrossRefADSGoogle Scholar 45. H. Wei and R. G. Cai, Phys. Rev. D 72, 123507 (2005). CrossRefADSGoogle Scholar 46. M. Alimohammadi and H. Mohseni Sadjadi, Phys. Rev. D 73, 083527 (2006). CrossRefADSGoogle Scholar 47. W. Zhao and Y. Zhang, Phys. Rev. D 73, 123509 (2006). CrossRefADSGoogle Scholar 48. H. Wei, N. N. Tang, and S. N. Zhang, Phys. Rev. D 75, 043009 (2007). CrossRefADSGoogle Scholar 49. A. Sen, JHEP 0207, 065 (2002); hep-th/0203265. CrossRefADSGoogle Scholar 50. T. Padmanabhan, Phys. Rev. D 66, 021301 (2002); hep-th/0204150. CrossRefADSGoogle Scholar 51. J. Zhang, X. Zhang, and H. Liu, Phys. Lett. B 651, 84 (2007); arXiv: 0706.1185. MathSciNetCrossRefADSGoogle Scholar 52. N. Arkani-Hamed, H. C. Cheng, M. A. Luty, and S. Mukohyama, JHEP 0405, 074 (2004); hep-th/0312099. CrossRefADSGoogle Scholar 53. F. Piazza and S. Tsujikawa, JCAP 0407, 004 (2004); hep-th/0405054. CrossRefADSGoogle Scholar 54. X. Zhang, Phys. Rev. D 74, 103505 (2006); astro-ph/0609699. CrossRefADSGoogle Scholar 55. J. Zhang, X. Zhang, and H. Liu, Mod. Phys. Lett. A 23, 139 (2008); astro-ph/0612642. CrossRefADSGoogle Scholar 56. X. Zhang, Phys. Rev. D 79, 103509 (2009); arXiv: 0901.2262. CrossRefADSGoogle Scholar 57. G. t Hooft, Salamfest 0284–296 (1993); gr-qc/9310026. Google Scholar 58. L. Susskind, J. Math. Phys. (N.Y.) 36, 6377 (1995). CrossRefADSGoogle Scholar 59. R. Bousso, Rev. Mod. Phys. 74, 825 (2002). CrossRefADSGoogle Scholar 60. J. D. Bekenstein, Phys. Rev. D 7, 2333 (1973); J. D. Bekenstein, Phys. Rev. D 9, 3292 (1974); J. D. Bekenstein, Phys. Rev. D 23, 287 (1981); J. D. Bekenstein, Phys. Rev. D 49, 1912 (1994). MathSciNetCrossRefADSGoogle Scholar 61. S. W. Hawking, Commun. Math. Phys. 43, 199 (1975); S. W. Hawking, Commun. Math. Phys. 46, 206 (1976); S. W. Hawking, Phys. Rev. D 13, 191 (1976). CrossRefADSGoogle Scholar 62. A. N. Tawfik and A. M. Diab, Int. J. Mod. Phys. A 30, 1550059 (2015); arXiv: 1502.04562. CrossRefGoogle Scholar 63. A. N. Tawfik and E. A. El Dahab, Int. J. Mod. Phys. A 30, 1550030 (2015); arXiv: 1501.01286. CrossRefADSGoogle Scholar 64. A. G. Cohen, D. B. Kaplan, and A. E. Nelson, Phys. Rev. Lett. 82, 4971 (1999). MathSciNetCrossRefADSGoogle Scholar 65. M. Li, Phys. Lett. B 603, 1 (2004). CrossRefADSGoogle Scholar 66. S. D. H. Hsu, Phys. Lett. B 594, 13 (2004). CrossRefADSGoogle Scholar 67. W. McCrea, Proc. Roy. Soc. A 206, 562 (1951). CrossRefADSGoogle Scholar 68. A. F. Ali and A. Tawfik, Adv. High Energy Phys. 2013, 126528 (2013); arXiv: 1301.3508 [gr-qc] Google Scholar 69. S. Thomas, Phys. Rev. Lett. 89, 081301 (2002). MathSciNetCrossRefADSGoogle Scholar 70. R.-G. Cai, Phys. Lett. B 657, 228 (2007). MathSciNetCrossRefADSGoogle Scholar 71. Michael Maziashvili, Phys. Lett. B 652, 165 (2007); arXiv: 0705.0924. CrossRefADSGoogle Scholar 72. F. Karolyhazy, Nuovo Cim. A 42, 390 (1966). CrossRefADSGoogle Scholar 73. N. Sasakura, Prog. Theor. Phys. 02, 169 (1999); hep-th/9903146. CrossRefADSGoogle Scholar 74. Y. J. Ng and H. Van Dam, Mod. Phys. Lett. A 9, 335 (1994). CrossRefADSGoogle Scholar 75. W. A. Christiansen, Y. J. Ng, and H. van Dam, Phys. Rev. Lett. 96, 051301 (2006); gr-qc/0508121. MathSciNetCrossRefADSGoogle Scholar 76. M. Arzano, T. W. Kephart, Y J. Ng, Phys. Lett. B 649, 243 (2007). MathSciNetCrossRefADSGoogle Scholar 77. A. N. Tawfik and A. M. Diab, Int. J. Mod. Phys. D 23, 1430025 (2014); arXiv: 1410.0206. CrossRefADSGoogle Scholar 78. A. N. Tawfik and A. M. Diab, Rep. Prog. Phys. 78, 126001 (2015); arXiv: 1509.02436. CrossRefADSGoogle Scholar 79. Xavier Calmet, Eur. Phys. J. C 54, 501 (2008); hep-th/0701073. CrossRefADSGoogle Scholar 80. A. Tawfik, JCAP 1307, 040 (2013); arXiv: 1307.1894 [gr-qc] CrossRefADSGoogle Scholar 81. M. Maziashvili, Int. J. Mod. Phys. D 16, 1531 (2007). MathSciNetCrossRefADSGoogle Scholar 82. H. Wei and R.-G. Cai, Phys. Lett. B 660, 113 (2008). CrossRefADSGoogle Scholar 83. N. Margolus and L. B. Levitin, Physica D 120, 188 (1998). CrossRefADSGoogle Scholar 84. Y. Jack Ng, Entropy 10, 441 (2008). MathSciNetCrossRefGoogle Scholar 85. Y. X. Chen and Y. Xiao, Phys. Lett. B 666, 371 (2008); arXiv: 0712.3119.. MathSciNetCrossRefADSGoogle Scholar 86. Y.J. Ng, Phys. Rev. Lett. 86, 2946 (2001). MathSciNetCrossRefADSGoogle Scholar 87. Yun Soo Myung and Min-Gyun Seo, Phys. Lett. B 671, 435 (2009). CrossRefADSGoogle Scholar 88. S. D. Liang and T. Harko, Phys. Rev. D 91, 085042 (2015). CrossRefADSGoogle Scholar 89. A. N. Tawfik and H. Magdy, Int. J. Mod. Phys. A 29, 1450152 (2014); arXiv: 1206.0901. CrossRefGoogle Scholar 90. A. N. Tawfik, A. M. Diab, and M. T. Hussein, J. Phys. G 45, 055008 (2018); arXiv: 1604.08174. CrossRefADSGoogle Scholar 91. S. D. Hsu, Phys. Lett. B 594, 13 (2004); hep-th/0403052. CrossRefADSGoogle Scholar 92. R. Horvat, Phys. Rev. D 70, 087301 (2004); astro-ph/0404204. MathSciNetCrossRefADSGoogle Scholar 93. Y. S. Myung, Phys. Lett. B 652, 223 (2007). MathSciNetCrossRefADSGoogle Scholar 94. V. Sahni, T. D. Saini, A. A. Starobinsky, and U. Alam, JETP Lett. 77, 201 (2003). CrossRefADSGoogle Scholar 95. X. Zhang, Int. J. Mod. Phys. D 14, 1597 (2005); astro-ph/0504586. CrossRefADSGoogle Scholar 96. M. R. Setare, J. Zhang, and X. Zhang, JCAP 0703, 007 (2007); gr-qc/0611084. CrossRefADSGoogle Scholar 97. A. N. Tawfik, A. M. Diab, E. A. El Dahab, and T. Harko, Phys. Rev. D 93, 063526 (2016); 1603.03032. MathSciNetCrossRefADSGoogle Scholar 98. K.Y. Kim, H. W. Lee, and Y.S. Myung, Phys. Lett. B 660, 118 (2008). CrossRefADSGoogle Scholar 99. A. Pasqua, S. Chattopadhyay, and I. Khomenko, Int. J. Theor. Phys. 52, 2496 (2013). CrossRefGoogle Scholar 100. V. Fayaz, Astrophys. Space Sci. 361, 86 (2016). MathSciNetCrossRefADSGoogle Scholar 101. S. W. Hawking, Phys. Rev. D 52, 5681 (1995). MathSciNetCrossRefADSGoogle Scholar 102. Luis J. Garay, Phys. Rev. D 58, 124015 (1998). MathSciNetCrossRefADSGoogle Scholar 103. S. W. Hawking, Phys. Rev. D 46, 603 (1992). MathSciNetCrossRefADSGoogle Scholar 104. Li-Xin Li and J. R. Gott III, Phys. Rev. Lett. 80, 2980 (1998). CrossRefADSGoogle Scholar 105. Ian H. Redmount and Wai-Mo Suen, Phys. Rev. D 47 R2163–R2167 (1993); gr-qc/9210017. CrossRefADSGoogle Scholar 106. Z. Keresztes, L. A. Gergely, T. Harko, and Shi-Dong Liang, Phys. Rev. D 92, 123503 (2015). CrossRefADSGoogle Scholar 107. A. Golovnev and A. Klementev, JCAP 02, 033 (2014). CrossRefADSGoogle Scholar 108. B. Himmetoglu, C. R. Contaldi, and M. Peloso, Phys. Rev. Lett. 102, 111301 (2009); B. Himmetoglu, C. R. Contaldi, and M. Peloso, Phys. Rev. D 80, 123530 (2009). CrossRefADSGoogle Scholar 109. A. Golovnev, Phys. Rev. D 81, 023514 (2010).0202-2893https://doi.org/10.1134/S0202289319020154https://link.springer.com/article/10.1134/S0202289319020154Accession Number: WOS:000471188100002Based on quantum mechanics and general relativity, Karolyhazy proposed a generalization to the well-known Heisenberg uncertainty relation in which the energy density of quantum fluctuations of space-time plays a crucial role. Later on, various holographic DE models were suggested, in which the Hubble scale (size) and the age of the universe were assumed as measures for the largest infrared cutoff satisfying the holographic principle and energy bounds assuring applicability of quantum field theory. We review various models based on the holographic principle and the Karolyhazy relation and compare these to the space-time foam and superconducting DE models. We analyze their (in)stability against cosmological perturbation.en-USOctober University for University for INSTABILITYFOAMEQUATIONCONSTANTQUANTUMQUINTOM COSMOLOGIESUNCERTAINTY RELATIONBLACK-HOLESCOSMOLOGICAL CONSEQUENCESSPACE-TIMEReview on Dark Energy ModelsArticlehttps://doi.org/10.1134/S0202289319020154