Khaled Darwish, Sherine2019-10-102019-10-102019Copyright © 2019 MSA University. All Rights Reserved.https://t.ly/5Xmk1يتم تقديم تقنية عامة لتحويل الصور ذات التدرج الرمادي إلى صورة ملونة ، ولتحقيق ذلك ، يلزم استخدام تقنية معينة للتنبؤ ببعض لون بكسل معين في الصورة بشكل تكيفي باستخدام أساليب التعلم العميق. على الرغم من أن إضافة اللون إلى الصور ذات اللون الرمادي يمكن أن يساعد في تحسين كل من المظهر البصري والتعبير. تم استكشاف بنى الشبكة المختلفة والأهداف ومساحات الألوان وتركيبات المشكلات. تسمى الطريقة المستخدمة في هذه الورقة الشبكة العصبية التلافيفية العميقة حيث لعبت دورًا بارزًا في معالجة الصور ورؤية الكمبيوتر. يمكننا تدريب صورنا للحصول على صور ملونة تتكون من 3 قنوات. يتدرب المشروع في الغالب على فراغ لوني مختلف عن كل الصور ، حيث يتم تحويل كل صورة إلى فراغ لوني L * a * b * ويمر حسب النموذج الذي تم إنشاؤه. ينصب التركيز الرئيسي في هذا المشروع على نموذجين مختلفين ، أحدهما لكل قناة متوقعة "a" و "b". يمكن أن تتغير خسارة القنوات المتوقعة من فئة إلى فئة أخرى. يمكن استخدام هذه الفكرة نفسها في تحويل مقاطع الفيديو ذات التدرج الرمادي أو تلك القديمة إلى مقاطع ملونة مثل الأفلام القديمة ، ويمكن أن يساعد تلوين الفيديو كثيرًا في الأفلام وتسجيلات CCTV القديمة التي تسجل بالأبيض والأسود. قم بتغذية النموذج بمجموعة من الصور التي يمكن تحويلها إلى مشهد ملون نهائي. يمكن أن يساعد تلوين الفيديو كثيرًا في الأفلام وتسجيلات CCTV القديمة التي تسجل بالأبيض والأسود. قد يكون تحسين النموذج في المستقبل من خلال تغذية النموذج بمجموعة من الصور التي يمكن تحويلها إلى مشهد ملون نهائي.enOctober University of Modern Sciences and ArtsUniversity of Modern Sciences and ArtsMSA universityجامعة أكتوبر للعلوم الحديثة والآدابArtificial intelligenceColorization Using Deep Convolutional Neural NetworksOther