E. Kahil, Magd2020-01-182020-01-182018[1] M. Mathisson, Acta Phys. Polon 6, 163 (1937). [2] A.Papapetrou , Proceedings of Royal Society London A 209 , 248(1951). [3] W. G. Dixon Proc. R. Soc. London, Ser. A 314, 499 (1970). [4] F. Cianfrani, I. Milillo and G. Montani Phys, Lett. A, 366,7 ; gr-qc/0701157 (2007). [5]Utyiama, R.(1956) Phys Rev. 101 1597 [6]Kibble, T.W. (1960) J. Math Phys., 2, 212 [7]Hehl, von der Heyde, P. Kerlik, G.D. and Nester, J.M. (1976) Rev Mod Phys 48, 393- 416 [8] F.W. Hehl , Proceedings of the 6th Course of the International School of Cosmology and Gravitation on ”Spin, Torsion and Supergravity” eds. P.G. Bergamann and V. de Sabatta , held at Erice ,1 (1979). [9]H.I. Acros, and J.G. Pereira, International Journal of Modern Physics D 13, 2193 (2004) [10] S. Hojman, Physical Rev. D 18, 2741 (1978). ([11])P.H. Yasskin, and W.R. Stoeger, Phys. Rev. D 21, 2081(1980). [12]Hammond, R. (2002) Rep. Prog. Phys, 65, 599-449 [13]K. Hayashi, and T. Shirifuji , Phys. Rev. D, 19, 3524 (1979). [14] Mikhail, F.I. and Wanas, M.I. (1977) Proc. Roy. Soc. Lond. A 356, 471. [15] Wanas, M.I. (2001) Stud. Cercet. S¸tiint¸. Ser. Mat. Univ. Bac˘au 10, 297; grqc/0209050 [16] Wanas, M.I. (2000) Turk. J. Phys., 24, 473 ; gr-qc/0010099. [17] Wanas, M.I., Melek, M. and Kahil, M.E.(1995) Astrophys. Space Sci.,228, 273. ; gr-qc/0207113. [18] Wanas, M.I.(1998) Astrophys. Space Sci., 258, 237 ;vgr-qc/9904019. [19] Wanas, M.I., Melek, M. and Kahil, M.E. (2000) Grav. Cosmol., 6 , 319. [20] Wanas, M.I., Melek, M. and Kahil, M.E. (2002) Proc. MG IX, part B, p.1100, Eds. V.G. Gurzadyan et al. (World Scientific Pub.); gr-qc/0306086. [21] Bazanski, S.I. (1989) J. Math. Phys., 30, 1018. 16 [22] D. Bini and A Geralico, Phys. Rev D 84,104012; arXiv: 1408.4952 (2011) [23] Kahil, M.E. (2006) , J. Math. Physics 47,052501. [24] Magd E. Kahil, Odessa Astronomical Publications, vol 28/2, 126. (2015) [25] Magd E. Kahil , Gravi. Cosmol. 24, 83 (2018) [26] M. Mohseni , Gen. Rel. Grav., 42, 2477 (2010). [27]M. Roshan, Phys.Rev. D87,044005 ; arXiv 1210.3136 (2013)https://arxiv.org/pdf/1802.04058.pdfMSA Google ScholarEquations of spinning objects are obtained in Absolute Parallelism Geometry [AP], a special class of non-Riemannian geometry admitting an alternative nonvanishing curvature and torsion simultaneously. This new set of equations is the counterpart of the Papapetrou equations in the Riemannian geometry. Applying, the concept of geometerization of physics, it may give rise to describe the spin tensor as parameterized commutation relation between path and path deviation equations in both Riemannian and non-Riemannian geometries.enUniversity of The spinning equations of motionThe spinning equations of motion for objects in AP-geometryArticle