Helmy, AEl-Shazly, MSeleem, AAbdelmohsen, USalem, M.ASamir, ARabeh, MElshamy, ASingab, A.N.B2020-03-252020-03-252020Shawkey, A.M., Rabeh, M.A., Abdulall, A.K., Abdellatif, A.O. Green nanotechnology: Anticancer activity of silver nanoparticles using Citrullus colocynthis aqueous extracts (2013) Advances in Life Science and Technology, 13, pp. 60-70. Cited 24 times. 2 Padalia, H., Moteriya, P., Chanda, S. Green synthesis of silver nanoparticles from marigold flower and its synergistic antimicrobial potential (Open Access) (2015) Arabian Journal of Chemistry, 8 (5), pp. 732-741. Cited 100 times. http://colleges.ksu.edu.sa/Arabic%20Colleges/CollegeOfScience/ChemicalDept/AJC/default.aspx (ScienceDirect http://www.sciencedirect.com/science/journal/18785352) doi: 10.1016/j.arabjc.2014.11.015 View at Publisher 3 Almontasser, A., Parveen, A., Azam, A. Synthesis, Characterization and antibacterial activity of Magnesium Oxide (MgO) nanoparticles. (Open Access) (2019) IOP Conference Series: Materials Science and Engineering, 577 (1), art. no. 012051. https://iopscience.iop.org/journal/1757-899X doi: 10.1088/1757-899X/577/1/012051 View at Publisher 4 Amal, M.I., Wibowo, J.T., Nuraini, L., Senopati, G., Hasbi, M.Y., Priyotomo, G. Antibacterial activity of copper oxide nanoparticles prepared by mechanical milling (Open Access) (2019) IOP Conference Series: Materials Science and Engineering, 578 (1), art. no. 012039. https://iopscience.iop.org/journal/1757-899X doi: 10.1088/1757-899X/578/1/012039 View at Publisher 5 Mollick, M.M.R., Rana, D., Dash, S.K., Chattopadhyay, S., Bhowmick, B., Maity, D., Mondal, D., (...), Chattopadhyay, D. Studies on green synthesized silver nanoparticles using Abelmoschus esculentus (L.) pulp extract having anticancer (in vitro) and antimicrobial applications (Open Access) (2019) Arabian Journal of Chemistry, 12 (8), pp. 2572-2584. Cited 26 times. http://colleges.ksu.edu.sa/Arabic%20Colleges/CollegeOfScience/ChemicalDept/AJC/default.aspx (ScienceDirect http://www.sciencedirect.com/science/journal/18785352) doi: 10.1016/j.arabjc.2015.04.033 View at Publisher 6 Bae, C.H., Nam, S.H., Park, S.M. Formation of silver nanoparticles by laser ablation of a silver target in NaCl solution (2002) Applied Surface Science, 197-198, pp. 628-634. Cited 207 times. http://www.journals.elsevier.com/applied-surface-science/ doi: 10.1016/S0169-4332(02)00430-0 View at Publisher 7 Sharma, V.K., Yngard, R.A., Lin, Y. Silver nanoparticles: Green synthesis and their antimicrobial activities (2009) Advances in Colloid and Interface Science, 145 (1-2), pp. 83-96. Cited 2264 times. doi: 10.1016/j.cis.2008.09.002 View at Publisher 8 Panáček, A., Kvítek, L., Prucek, R., Kolář, M., Večeřová, R., Pizúrová, N., Sharma, V.K., (...), Zbořil, R. Silver colloid nanoparticles: Synthesis, characterization, and their antibacterial activity (2006) Journal of Physical Chemistry B, 110 (33), pp. 16248-16253. Cited 1603 times. http://pubs.acs.org/journal/jpcbfk doi: 10.1021/jp063826h View at Publisher 9 Maity, D., Kanti Bain, M., Bhowmick, B., Sarkar, J., Saha, S., Acharya, K., Chakraborty, M., (...), Chattopadhyay, D. In situ synthesis, characterization, and antimicrobial activity of silver nanoparticles using water soluble polymer (2011) Journal of Applied Polymer Science, 122 (4), pp. 2189-2196. Cited 48 times. doi: 10.1002/app.34266 View at Publisher 10 Callegari, A., Tonti, D., Chergui, M. Photochemically Grown Silver Nanoparticles with Wavelength-Controlled Size and Shape (2003) Nano Letters, 3 (11), pp. 1565-1568. Cited 385 times. doi: 10.1021/nl034757a View at Publisher 11 Yin, B., Ma, H., Wang, S., Chen, S. Electrochemical synthesis of silver nanoparticles under protection of poly(N-vinylpyrrolidone) (2003) Journal of Physical Chemistry B, 107 (34), pp. 8898-8904. Cited 419 times. View at Publisher 12 Lim, K.T., Hwang, H.S., Ryoo, W., Johnston, K.P. Synthesis of TiO 2 Nanoparticles Utilizing Hydrated Reverse Micelles in CO 2 (2004) Langmuir, 20 (6), pp. 2466-2471. Cited 90 times. doi: 10.1021/la035646u View at Publisher 13 Jen-La Plante, I., Zeid, T.W., Yang, P., Mokari, T. Synthesis of metal sulfide nanomaterials via thermal decomposition of single-source precursors (2010) Journal of Materials Chemistry, 20 (32), pp. 6612-6617. Cited 84 times. doi: 10.1039/c0jm00439a View at Publisher 14 Dimitrijevic, N.M., Bartels, D.M., Jonah, C.D., Takahashi, K., Rajh, T. Radiolytically induced formation and optical absorption spectra of colloidal silver nanoparticles in supercritical ethane (2001) Journal of Physical Chemistry B, 105 (5), pp. 954-959. Cited 102 times. View at Publisher 15 Donda, M.R., Kudle, K.R., Alwala, J., Miryala, A., Sreedhar, B., Rudra, M.P. Synthesis of silver nanoparticles using extracts of Securinega leucopyrus and evaluation of its antibacterial activity (2013) Int J Curr Sci, 7, pp. E1-E8. Cited 24 times. 16 Satyavani, K., Ramanathan, T., Gurudeeban, S. Green synthesis of silver nanoparticles by using stem derived callus extract of bitter apple (Citrullus colocynthis) (2011) Digest Journal of Nanomaterials and Biostructures, 6 (3), pp. 1019-1024. Cited 50 times. http://www.chalcogen.infim.ro/1019_Satyavani.pdf 17 Rath, M., Panda, S.S., Dhal, N.K. Synthesis of silver nano particles from plant extract and its application in cancer treatment: A review (2014) Int J Plant Anim Environ Sci, 4, pp. 137-145. Cited 10 times. 18 Padil, V.V.T., Wacławek, S., Černík, M. Green Synthesis: Nanoparticles and Nanofibres Based on Tree Gums for Environmental Applications (Open Access) (2016) Ecological Chemistry and Engineering S, 23 (4), pp. 533-557. Cited 17 times. http://www.degruyter.com/view/j/eces doi: 10.1515/eces-2016-0038 View at Publisher 19 Paulo, C.S.O., Vidal, M., Ferreira, L.S. Antifungal nanoparticles and surfaces (2010) Biomacromolecules, 11 (10), pp. 2810-2817. Cited 49 times. doi: 10.1021/bm100893r View at Publisher 20 Dheeb, B.I., Al-Dujayli, S.M.A., Ibrahim, I.M., Abbas, Q.A., Ali, A.H., Ramizy, A., Eisa, M.H., (...), Hussain, A.F. Study the Antifungal Activity of ZnS:Mn Nanoparticles Against Some Isolated Pathogenic Fungi (Open Access) (2019) Journal of Physics: Conference Series, 1178 (1), art. no. 012008. http://iopscience.iop.org/journal/1742-6596 doi: 10.1088/1742-6596/1178/1/012008 View at Publisher 21 Xing, Y., Zhu, H., Chang, G., Yu, M., Zhao, M., Yue, F. Anatase Tio2 Nanoparticles Sensitized with Organic Dyes as Efficient Antibacterial Agents (Open Access) (2019) IOP Conference Series: Earth and Environmental Science, 252 (2), art. no. 022057. Cited 2 times. https://iopscience.iop.org/journal/1755-1315 doi: 10.1088/1755-1315/252/2/022057 View at Publisher 22 Bhattacharya, P., Swain, S., Giri, L., Neogi, S. Fabrication of magnesium oxide nanoparticles by solvent alteration and their bactericidal applications (2019) Journal of Materials Chemistry B, 7 (26), pp. 4141-4152. Cited 3 times. http://pubs.rsc.org/en/journals/journal/tb doi: 10.1039/c9tb00782b View at Publisher 23 Deyá, C., Bellotti, N. Biosynthesized silver nanoparticles to control fungal infections in indoor environments (Open Access) (2017) Advances in Natural Sciences: Nanoscience and Nanotechnology, 8 (2), art. no. 025005. Cited 5 times. http://iopscience.iop.org/article/10.1088/2043-6254/aa6880/pdf doi: 10.1088/2043-6254/aa6880 View at Publisher 24 Ravi, D., Sathish, S., Parthasarathy, R., Priyadharshini, M., Revathy, M. Synthesis and characterization of silver nanoparticles from Andrographis paniculata (Linn.) and it's cytotoxicity against sheep's bone marrow cells (2013) International Journal of Biological & Pharmaceutical Research, 4, pp. 1222-1228. Cited 3 times. 25 Roy, K., Sarkar, C.K., Ghosh, C.K. Plant-mediated synthesis of silver nanoparticles using parsley (Petroselinum crispum) leaf extract: spectral analysis of the particles and antibacterial study (Open Access) (2015) Applied Nanoscience (Switzerland), 5 (8), pp. 945-951. Cited 38 times. https://rd.springer.com/journal/13204https://www.springer.com/materials/nanotechnology/journal/13204 doi: 10.1007/s13204-014-0393-3 View at Publisher 26 Bhattacharya, P., Neogi, S. Gentamicin coated iron oxide nanoparticles as novel antibacterial agents (2017) Materials Research Express, 4 (9), art. no. 095005. Cited 13 times. http://iopscience.iop.org/article/10.1088/2053-1591/aa8652/pdf doi: 10.1088/2053-1591/aa8652 View at Publisher 27 Li, P., Li, J., Wu, C., Wu, Q., Li, J. Synergistic antibacterial effects of β-lactam antibiotic combined with silver nanoparticles (2005) Nanotechnology, 16 (9), pp. 1912-1917. Cited 343 times. doi: 10.1088/0957-4484/16/9/082 View at Publisher 28 Patra, J.K., Baek, K.-H. Biosynthesis of silver nanoparticles using aqueous extract of silky hairs of corn and investigation of its antibacterial and anticandidal synergistic activity and antioxidant potential (2016) IET Nanobiotechnology, 10 (5), pp. 326-333. Cited 14 times. www.ietdl.org/IET-NBT doi: 10.1049/iet-nbt.2015.0102 View at Publisher 29 Li, Y.-F., Gan, W.-P., Zhou, J., Lu, Z.-Q., Yang, C., Ge, T.-T. Hydrothermal synthesis of silver nanoparticles in Arabic gum aqueous solutions (2015) Transactions of Nonferrous Metals Society of China (English Edition), 25 (6), pp. 2081-2086. Cited 25 times. doi: 10.1016/S1003-6326(15)63818-3 View at Publisher 30 Venkatesham, M., Ayodhya, D., Madhusudhan, A., Veerabhadram, G. Synthesis of stable silver nanoparticles using gum acacia as reducing and stabilizing agent and study of its microbial properties: A novel green approach (2012) International Journal of Green Nanotechnology: Biomedicine, 4 (3), pp. 199-206. Cited 10 times. doi: 10.1080/19430892.2012.705999 View at Publisher 31 Ansari, M.A., Khan, H.M., Khan, A.A., Cameotra, S.S., Saquib, Q., Musarrat, J. Gum arabic capped-silver nanoparticles inhibit biofilm formation by multi-drug resistant strains of Pseudomonas aeruginosa (2014) Journal of Basic Microbiology, 54 (7), pp. 688-699. Cited 37 times. www.interscience.wiley.com/jpages/0233-111X doi: 10.1002/jobm.201300748 View at Publisher 32 BEUTLER, E., DURON, O., KELLY, B.M. Improved method for the determination of blood glutathione. (1963) The Journal of laboratory and clinical medicine, 61, pp. 882-888. Cited 4306 times. 33 Shabana, M.M., El-Sherei, M.M., Moussa, M.Y., Sleem, A.A., Abdallah, H.M. Investigation of phenolic constituents of Carduncellus eriocephalus Boiss. var. albiflora Gauba and their biological activities (2007) Natural Product Communications, 2 (8), pp. 823-828. Cited 11 times. http://www.naturalproduct.us/index.asp 34 Rather, S., Sarumathi, A., Anbu, S., Saravanan, N. Gallic acid protects against immobilization stress-induced changes in wistar rats (2013) Journal of Stress Physiology & Biochemistry, 9, pp. 136-147. Cited 9 times. 35 Ratheesh, M., Helen, A. Anti-inflammatory activity of Ruta graveolens Linn on carrageenan induced paw edema in wistar male rats (2007) African Journal of Biotechnology, 6 (10), pp. 1209-1211. Cited 52 times. http://www.academicjournals.org/AJB/PDF/pdf2007/16May/Ratheesh%20and%20Helen.pdf View at Publisher 36 Magaldi, S., Mata-Essayag, S., Hartung De Capriles, C., Perez, C., Colella, M.T., Olaizola, C., Ontiveros, Y. Well diffusion for antifungal susceptibility testing (Open Access) (2004) International Journal of Infectious Diseases, 8 (1), pp. 39-45. Cited 155 times. doi: 10.1016/j.ijid.2003.03.002 View at Publisher 37 Valgas, C., De Souza, S.M., Smânia, E.F.A., Smânia Jr., A. Screening methods to determine antibacterial activity of natural products (Open Access) (2007) Brazilian Journal of Microbiology, 38 (2), pp. 369-380. Cited 364 times. http://www.scielo.br/pdf/bjm/v38n2/v38n2a34.pdf doi: 10.1590/S1517-83822007000200034 View at Publisher 38 Raheem, D.J., Tawfike, A.F., Abdelmohsen, U.R., Edrada-Ebel, R.A., Fitzsimmons-Thoss, V. Application of metabolomics and molecular networking in investigating the chemical profile and antitrypanosomal activity of British bluebells (Hyacinthoides non-scripta) (Open Access) (2019) Scientific Reports, 9 (1), art. no. 2547. Cited 6 times. www.nature.com/srep/index.html doi: 10.1038/s41598-019-38940-w View at Publisher 39 Abdelmohsen, U.R., Cheng, C., Viegelmann, C., Zhang, T., Grkovic, T., Ahmed, S., Quinn, R.J., (...), Edrada-Ebel, R. Dereplication strategies for targeted isolation of new antitrypanosomal actinosporins a and B from a marine sponge associated-Actinokineospora sp. EG49 (Open Access) (2014) Marine Drugs, 12 (3), pp. 1220-1244. Cited 65 times. http://www.mdpi.com/1660-3397/12/3/1220/pdf doi: 10.3390/md12031220 View at Publisher 40 Tawfik, N.F., Tawfike, Abdo, R., Abbott, G., Abdelmohsen, U., Edrada-Ebel, R., Haggag, E. Metabolomics and dereplication study of the endophytic fungus Aspergillus chevelieri in search of bioactive natural compounds (2017) Journal of Advanced Pharmacy Research, 1, pp. 100-109. 41 O'Boyle, N.M., Banck, M., James, C.A., Morley, C., Vandermeersch, T., Hutchison, G.R. Open Babel: An Open chemical toolbox (Open Access) (2011) Journal of Cheminformatics, 3 (10), art. no. 33. Cited 2199 times. http://www.jcheminf.com/content/pdf/1758-2946-3-33.pdf doi: 10.1186/1758-2946-3-33 View at Publisher 42 Morris, G.M., Ruth, H., Lindstrom, W., Sanner, M.F., Belew, R.K., Goodsell, D.S., Olson, A.J. Software news and updates AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility (2009) Journal of Computational Chemistry, 30 (16), pp. 2785-2791. Cited 7273 times. http://www3.interscience.wiley.com/cgi-bin/fulltext/122365050/PDFSTART doi: 10.1002/jcc.21256 View at Publisher 43 Taha, Z.K., Hawar, S.N., Sulaiman, G.M. Extracellular biosynthesis of silver nanoparticles from Penicillium italicum and its antioxidant, antimicrobial and cytotoxicity activities (2019) Biotechnology Letters, 41 (8-9), pp. 899-914. Cited 7 times. www.wkap.nl/journalhome.htm/0141-5492 doi: 10.1007/s10529-019-02699-x View at Publisher 44 Ahmed, S., Ikram, S. Silver nanoparticles: One pot green synthesis using Terminalia arjuna extract for biological application (2015) J Nanomed Nanotechnol, 6, p. 309. Cited 55 times. 45 Anandalakshmi, K., Venugobal, J., Ramasamy, V. Characterization of silver nanoparticles by green synthesis method using Pedalium murex leaf extract and their antibacterial activity (Open Access) (2016) Applied Nanoscience (Switzerland), 6 (3), pp. 399-408. Cited 148 times. https://rd.springer.com/journal/13204https://www.springer.com/materials/nanotechnology/journal/13204 doi: 10.1007/s13204-015-0449-z View at Publisher 46 Sulaiman, G.M., Hussien, H.T., Saleem, M.M.N.M. Biosynthesis of silver nanoparticles synthesized by Aspergillus flavus and their antioxidant, antimicrobial and cytotoxicity properties (Open Access) (2015) Bulletin of Materials Science, 38 (3), pp. 639-644. Cited 15 times. http://www.ias.ac.in/public/Downloads/boms_038_03_0639-0644.pdf doi: 10.1007/s12034-015-0905-0 View at Publisher 47 Al-Shmgani, H.S.A., Mohammed, W.H., Sulaiman, G.M., Saadoon, A.H. Biosynthesis of silver nanoparticles from Catharanthus roseus leaf extract and assessing their antioxidant, antimicrobial, and wound-healing activities (2017) Artificial Cells, Nanomedicine and Biotechnology, 45 (6), pp. 1234-1240. Cited 22 times. http://www.tandfonline.com/loi/ianb20#.VmugQbfovcs doi: 10.1080/21691401.2016.1220950 View at Publisher 48 Chaiittianan, R., Chayopas, P., Rattanathongkom, A., Tippayawat, P., Sutthanut, K. Anti-obesity potential of corn silks: Relationships of phytochemicals and antioxidation, anti-pre-adipocyte proliferation, anti-adipogenesis, and lipolysis induction (2016) Journal of Functional Foods, 23, pp. 497-510. Cited 13 times. http://www.elsevier.com/wps/find/journaldescription.cws_home/717426/description#description doi: 10.1016/j.jff.2016.03.010 View at Publisher 49 Chaudhary, S.K., Ceska, O., Tetu, C. Oxypeucedanin, a major furocoumarin in parsley, Petroselinum crispum (1986) Planta Medica, No. 6, pp. 462-464. Cited 21 times. View at Publisher 50 Vokk, R., Lõugas, T., Mets, K., Kravets, M. Dill (Anethum graveolens L.) and parsley (Petroselinum crispum (Mill.) Fuss) from Estonia: Seasonal differences in essential oil composition (2011) Agronomy Research, 9 (SPPL. ISS. 2), pp. 515-520. Cited 29 times. http://www.eau.ee/~agronomy/vol09Spec2/p09s222.pdf 51 Peddicord, L.A. Determination and quantification of surface lipid metabolites in maize silks: A pathway model for surface lipid biosynthesis based on simultaneous profiling of polar and non-polar metabolites (2013) Graduate Theses and Dissertations 52 Atta-ur-Rahman, Pervin, A., Iqbal Choudhary, M., Hasan, N., Sener, B. Sophazrine-A novel quinolizidine alkaloid from sophora griffithu (1991) Journal of Natural Products, 54 (4), pp. 929-935. Cited 15 times. doi: 10.1021/np50076a001 View at Publisher 53 Rontani, J.-F., Rabourdin, A., Pinot, F., Kandel, S., Aubert, C. Visible light-induced oxidation of unsaturated components of cutins: A significant process during the senescence of higher plants (2005) Phytochemistry, 66 (3), pp. 313-321. Cited 16 times. doi: 10.1016/j.phytochem.2004.12.015 View at Publisher 54 Larqué-Saavedra, A. Studies on the effect of prostaglandins on four plant bioassay systems (1979) Zeitschrift für Pflanzenphysiologie, 92, pp. 263-270. Cited 9 times. 55 Buckingham, J., Baggaly, K.H., Roberts, A.D., Szabo, L.F. (2010) Dictionary of Alkaloids with CD-ROM. Cited 111 times. 56 Goldblatt, A., Hootele, C., Pecher, J. The alkaloids of voacanga thouarsii var. obtusa (1970) Phytochemistry, 9 (6), pp. 1293-1298. Cited 16 times. doi: 10.1016/S0031-9422(00)85321-2 View at Publisher 57 Goutarel, M., Janot, M.‐M., Mathys, F., Prelog, V. (1956) Helvetica Chimica Acta, 39 (3), pp. 742-748. Cited 8 times. doi: 10.1002/hlca.19560390315 58 Sanchez, V., Ahond, A., Guilhem, J., Poupat, C., Potier, P. Alcaloides des feuilles de Didymeles madagascariensis Willd., des feuilles et des ecorces de racines de Didymeles perrieri Leandri (Didymelacees) (1987) Bulletin de la Société Chimique de France, 5, pp. 877-884. Cited 9 times. 59 Rafsanjany, N., Sendker, J., Lechtenberg, M., Petereit, F., Scharf, B., Hensel, A. Traditionally used medicinal plants against uncomplicated urinary tract infections: Are unusual, flavan-4-ol- and derhamnosylmaysin derivatives responsible for the antiadhesive activity of extracts obtained from stigmata of Zea mays L. against uropathogenic E. coli and Benzethonium chloride as frequent contaminant faking potential antibacterial activities? (2015) Fitoterapia, 105, art. no. 3231, pp. 246-253. Cited 13 times. www.elsevier.com/locate/fitote doi: 10.1016/j.fitote.2015.07.014 View at Publisher 60 Pérez-Castorena, A.-L., Martínez-Vázquez, M., Romo De Vivar, A. Diterpenes of Bahia glandulosa (1997) Phytochemistry, 46 (4), pp. 729-734. Cited 7 times. doi: 10.1016/S0031-9422(97)00235-5 View at Publisher 61 Akak, C.M., Djama, C.M., Nkengfack, A.E., Tu, P.-F., Lei, L.-D. New coumarin glycosides from the leaves of Diospyros crassiflora (Hiern) (2010) Fitoterapia, 81 (7), pp. 873-877. Cited 20 times. doi: 10.1016/j.fitote.2010.05.011 View at Publisher 62 Hassan, G.S., Abdel Rahman, D.E., Abdelmajeed, E.A., Refaey, R.H., Alaraby Salem, M., Nissan, Y.M. New pyrazole derivatives: Synthesis, anti-inflammatory activity, cycloxygenase inhibition assay and evaluation of mPGES (2019) European Journal of Medicinal Chemistry, 171, pp. 332-342. Cited 4 times. http://www.journals.elsevier.com/european-journal-of-medicinal-chemistry/ doi: 10.1016/j.ejmech.2019.03.05220531591https://doi.org/10.1088/2053-1591/ab6e2dhttps://t.ly/rq1gRScopusView references (62) Microbial resistance, oxidative stress, and inflammatory conditions are among the leading causes of death worldwide. In the current work, silver nanoparticles (AgNPs) were biosynthesized using the aqueous extracts of parsley, corn silk (CS), gum Arabic (GA) or combination of the three extracts. The formed nanoparticles were characterized using three techniques including transmission electron microscopy (TEM), UV-visible spectrophotometer and Fourier-transform infrared spectroscopy (FTIR). The antioxidant, anti-inflammatory, and antimicrobial activities were tested for the formed nanoparticles, the aqueous extracts of each of the three plants and their combination. Oxidative stress was induced by alloxan which promoted the development of diabetes mellitus in rats. Inflammation was induced by injecting carrageenan in rats' paws. Pathogenic microorganisms causing serious urinary tract infection (UTI) were selected for the antimicrobial assay. All aqueous extracts and the biosynthesized AgNPs showed variable degrees of antioxidant, anti-inflammatory and antimicrobial activities, however, the AgNPs biosynthesized by the combination of the three aqueous extracts was the most effective one. LC/MS was done to identify the compounds present in the crude extracts that may be responsible for the observed biological activities. LC/MS resulted in the identification of 13 compounds. Docking experiments on COX-1 (cyclooxygenase-1) and COX-2 (cyclooxygenase-2) were performed to determine the compounds responsible for the anti-inflammatory activity of the extracts. The results showed that silver nanoparticles synthesized by the combination of the three aqueous extracts are considered promising candidates for the development of antioxidant, anti-inflammatory and antimicrobial agentsen-USuniversity of anti-inflammatoryantimicrobialantioxidantcorn silkgum Arabicparsleysilver nanoparticlesThe synergistic effect of biosynthesized silver nanoparticles from a combined extract of parsley, corn silk, and gum arabic: In vivo antioxidant, anti-inflammatory and antimicrobial activitiesArticlehttps://doi.org/10.1088/2053-1591/ab6e2d