E. Kahil, M.2020-01-182020-01-182008[1] Bazanski, S.L. (1989) J. Math. Phys., 30, 1018. [2] Kahil, M.E. (2006), J. Math. Physics 47,052501. [3] Dahia, E., Monte,M. and Romaro,C. (2003), Mod.Phys.Lett.A18,1773; gr-qc/0303044 [4] Ponce de Leon, J. (2002) Grav. Cosmology, 8, 272; gr-qc/ 0104008 [5] Seahra, S.,(2002) Phys Rev. D. 65, 124004 gr-qc/0204032 [6] Liu, H. and Mashhoon, B. (2000), Phys. Lett. A, 272,26 ; gr-qc/0005079 3 [7] Youm, D. (2000) Phys.Rev.D62, 084002; hep-th/0004144 [8]Ponce de Leon, J. (2001) Phys Lett B, 523 ;gr-qc/0110063 [9]Dick, R. Class. Quant. Grav.(2001), 18, R1. [10] Papapetrou, A.(1951), Proc. Roy.Soc. Lond A209,248. [11] Maartens, R. (2004) Living Rev.Rel.7; gr-qc/0312059 [12]Sen, D.K. , Fields/Particles, The Ryerson Press Toronto (1968). [13] Ponce de Leon, J. (2001) Mod. phys. Lett. A 16, 2291 ;gr-qc/0111011https://arxiv.org/pdf/gr-qc/0701015.pdfMSA Google ScholarPaths of test particles, rotating and charged objects in brane-worlds using a modified Bazanski Lagrangian are derived. We also discuss the transition to their corresponding equations in four dimensions. We then make a comparison between the given equations in brane-worlds (BW) and their analog in space-time-matter (STM) theory.enUniversity of The Bazanski ApproachThe Bazanski Approach in Brane Worlds: A Brief IntroductionArticle