I. Wanas, M.E. Kahil, M.2020-02-012020-02-012005[1] Wanas, M.I. and Bakry, M.A. (1995) Astrophys. Space Sci., 228, 239. [2] Gurzadyan, V.G. (2003) Talk at XXII Solvey Conference on Physics (Delphi, Nov.24-29,2001); astro-ph/0312523. [3] Bazanski, S.L. (1989) J. Math. Phys., 30, 1018. [4] Wanas, M.I. (2001) Stud. Cercet. S¸tiint¸. Ser. Mat. Univ. Bac˘au 10,297; gr-qc/0209050. [5] Wanas, M.I., Melek, M. and Kahil, M.E. (1995) Astrophys. Space Sci., 228, 5 273; gr-qc/0207113. [6] Wanas, M.I. and Kahil, M.E. (1999) Gen. Rel. Grav., 31, 1921; gr-qc/9912007. [7] Wanas, M.I. (2003) Algebras, Groups and Geometries, 20, 345a. [8] Wanas, M.I. (1998) Astrophys. Space Sci., 258, 237; gr-qc/9904019. [9] Wanas, M.I., Melek, M. and Kahil, M.E. (2000) Gravit. Cosmol., 6, 319; gr-qc/9812085. [10] Sousa, A.A. and Maluf, J.W. (2004) Gen. Rel. Grav., 36, 967; gr-qc/0301131. [11] Wanas, M.I., Melek, M. and Kahil, M.E. (2002) Proc. MG IX, p.1100, Eds. V.G. Gurzadyan et al. (World Scientific Pub.); gr-qc/0306086. [12] Wanas, M.I. (2003) Gravit. Cosmol., 9, 109.https://t.ly/bjMEAMSA Google ScholarRecently, it has been shown that Absolute Parallelism (AP) geometry admits paths that are naturally quantized. These paths have been used to describe the motion of spinning particles in a background gravitational field. In case of a weak static gravitational field limits, the paths are applied successfully to interpret the discrepancy in the motion of thermal neutrons in the Earth’s gravitational field (COW-experiment). The aim of the present work is to explore the properties of the deviation equations corresponding to these paths. In the present work the deviation equations are derived and compared to the geodesic deviation equation of the Riemannian geometry.enUniversity of Path DeviationPath Deviation Equations in AP-GeometryArticle