Browsing by Author "Sadek, M. Shaaban"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Is the carotenoid production from Phaffia rhodozyma yeast genuinely sustainable? a comprehensive analysis of biocompatibility, environmental assessment, and techno-economic constraints(Elsevier Ltd, 2024-02) Mussagy, Cassamo U; Dias, Ana C.R.V; Santos-Ebinuma, Valeria C; Sadek, M. Shaaban; Ahmad, Mushtaq; de Andrade, Cleverton R; Haddad, Felipe F; dos Santos, Jean L; Scarim, Cau ˆ e B; Pereira, Jorge F.B; Floriano, Juliana Ferreira; Herculano, Rondinelli D; Mustafa, AhmadMicroorganisms, such as yeasts, filamentous fungi, bacteria, and microalgae, have gained significant attention due to their potential in producing commercially valuable natural carotenoids. In recent years, Phaffia rhodozyma yeasts have emerged as intriguing non-conventional sources of carotenoids, particularly astaxanthin and β-carotene. However, the shift from academic exploration to effective industrial implementation has been challenging to achieve. This study aims to bridge this gap by assessing various scenarios for carotenoid production and recovery. It explores the use of ionic liquids (ILs) and bio-based solvents (ethanol) to ensure safe extraction. The evaluation includes a comprehensive analysis involving Life Cycle Assessment (LCA), biocompatibility assessment, and Techno-Economic Analysis (TEA) of two integrated technologies that utilize choline-based ILs and ethanol (EtOH) for astaxanthin (+β-carotene) recovery from P. rhodozyma cells. This work evaluates the potential sustainability of integrating these alternative solvents within a yeast-based bioeconomy.Item Sustainable synthesis of 2-ethyl hexyl oleate via lipase-catalyzed esterification: A holistic simulation and cost analysis study(Elsevier B.V., 2024-07) Faisal, Shah; Sadek, M. Shaaban; Pastore, Carlo; di Bitonto, Luigi; Alshammari, Saud O; Mussagy, Cassamo U; El-Bahy, Salah M; Abdellatief, Tamer M.M; El-Bahy, Zeinhom M; Mustafa, AhmadLipase catalyzed synthesis of fatty acid esters has recently attracted much attention as it represents a cleaner production route compared to the conventional energy intensive chemical method. In this study, the technical and economic viability of 2-ethyl hexyl oleate (2-EHO) synthesis by the catalytic esterification of oleic acid (OA) and 2-ethyl hexyl alcohol (2-EHA) in a stirred tank reactor using Novozym 435 (Candida antarctica lipase B) was investigated. A conversion rate of 91% was obtained by adopting the subsequent optimized parameters: 4% enzyme amount, 2 h reaction time, 4:1 M ratio of alcohol to fatty acid, 150 rpm stirring speed, and 60 °C temperature. The lipase operational stability study showed that enzymes can be used for 30 successive cycles without significant lose in activity. The use of Aspen Plus simulator enabled the development of a detailed process flow diagram, which significantly improved the understanding of this clean production method and assessed the overall costs. A holistic cost analysis revealed a production cost of $2109 per ton of 2-EHO, thereby yielding an approximate 28% profit margin relative to prevailing market rates. Rigorous financial assessments corroborated the project's viability, substantiating a net present value (NPV) of $14.7 MM, a return on investment (ROI) of 583.91% (plant life time = 15 years), projected Payback Period stands at 6 years, and an internal rate of return (IRR) of 23%. These results confirm the technical and economic feasibility of lipase catalyzed production of 2-EHO, highlighting its potential as an environmentally and profitable approach in the synthesis of fatty acid esters.Item Techno-economic assessment of benzyl benzoate clean production using conventional heating or microwaves(Elsevier BV, 2023-09) Aprile, Simona; Venturi, Valentina; Presini, Francesco; Mustafa, Ahmad; Sadek, M. Shaaban; Inayat, Abrar; Remonatto, Daniela; Giovannini, Pier Paolo; Lerin, Lindomar AlbertoBenzyl benzoate is an important anti-scabies agent, so finding sustainable production processes is essential. This work involved the techno-economic assessment of benzyl benzoate production in a solventless system with conventional heating or microwave-assisted. The proposed processes' conditions were optimized by transesterifying methyl benzoate and benzyl alcohol in a solventless system using the Lipozyme 435 lipase as the catalyst. The optimized conditions were an ester/alcohol molar ratio of 1:6, a temperature of 73 °C, and enzyme loading of 10% and 16% (w/w), for conventional heating and microwave-assisted, respectively. Under these conditions, the two reactions reached conversions greater than 90% in 24 h and 82% in 7 h. The tests on lipase reusability showed that the ester production remains stable for up to 4 use cycles. Gas chromatography and proton NMR confirmed that benzyl benzoate could be produced biocatalytically, and a high purity can be obtained by simple distillation. The economic analysis of the process showed that the total capital investment was favorable, suggesting a promising investment opportunity. Furthermore, a production total cost showed a favorable positive net present value and returned on investment for benzyl benzoate production. Hence, the proposed clean production of benzyl benzoate can be considered for industrial scale-up.