Browsing by Author "Nassar, Noha N"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Dapagliflozin modulates neuronal injury via instigation of LKB1/p-AMPK/GABAB R2 signaling pathway and suppression of the inflammatory cascade in an essential tremor rat model(Taylor and Francis Ltd., 2023-04) Kamel, Ahmed S; Farrag, Sama M; Mansour, Heba M; Nassar, Noha N; Saad, Muhammed ABackground Although, disturbances in cellular energy demarcate the neuronal hyperexcitability in essential tremor (ET), nevertheless, no available data relates energy sensors and GABAergic neurotransmission in ET. Noteworthy, reports have asserted dapagliflozin’s (DAPA) role in enhancing autophagic sensors in other disorders. Herein, this study aimed to investigate DAPA’s impact on the GABAB receptor subunit (GABAB R2), notwithstanding the GABA A involvement, in an ET model. Methods ET was induced by a single dose of harmaline (30 mg/kg; i.p.) while DAPA (1mg/kg/day; p.o.) was given for 5 days before ET induction. The autophagic sensors were examined by injecting a single dose of dorsomorphin (DORSO) AMPK inhibitor (0.2 mg/kg; i.p.) on the 5th day before ET induction. Results DAPA decreased HAR-induced tremor score and alleviated motor disabilities observed in the open field, rotarod, wire grip strength, and gait kinematics confirmed by reduced electrical activity in electroencephalogram. In the cerebella, DAPA curbed HAR-evoked inflammatory cytokines, apoptotic markers, and glutamate while restoring the disturbed GABA, BDNF, LKB1, p-AMPK, and GABAB R2 levels. DAPA’s effect was mostly obliterated by DORSO. Conclusion DAPA offers a potential neuroprotective effect in ET by augmenting the neuronal inhibitory machinery via suppressing the inflammatory and excitotoxicity systems thru LKB1/p-AMPK/GABAB R2 signaling.Item Intranasal bilosomes in thermosensitive hydrogel: advancing desvenlafaxine succinate delivery for depression management(Taylor and Francis Ltd., 2024-07) El-Nawawy, Tayseer M; Adel, Yomna A; Teaima, Mahmoud; Nassar, Noha N; Nemr, Asmaa Ashraf; Al-Samadi, Inas; El-Nabarawi, Mohamed A; Elhabal, Sammar FDepression, the second biggest cause of disability worldwide, is widespread. Many antidepressant medications, including Desvenlafaxine Succinate (D.V.S.), function by elevating neurotransmitter levels at the synapse through the inhibition of reabsorption by neurons. However, the effectiveness of these treatments is often limited by their inability to reach the brain using conventional administration methods. Bilosome-stabilized nanovesicles containing bile salts have drawn much interest because of their adaptability and versatility in various applications. This study aimed to address this issue by formulating intranasal bilosomes incorporated into a mucoadhesive in situ gel to deliver D.V.S. directly to the brain for depression treatment. The desvenlafaxine-loaded bilosomes were developed using a thin film hydration method based on the l-optimal design. They were intended to provide a more convenient route of administration for antidepressants, enhancing bioavailability and brain targeting through intranasal delivery. The study assessed the optimized bilosomes for particle size (311.21 ± 0.42 nm), Zeta potential (–37.35 ± 0.43)and encapsulation efficiency (99.53 ± 0.41%) and further evaluated them in ex vivo and in vivo pharmacokinetics studies. Pharmacokinetic data reveal enhanced brain uptake compared to a free drug. A statistically optimized bilosome formulation was determined. The intranasal administration of mucoadhesive in situ gel containing desvenlafaxine succinate-loaded bilosomes facilitated direct nose-to-brain drug delivery, improving brain bioavailability.Item Vortioxetine ameliorates experimental autoimmune encephalomyelitis model of multiple sclerosis in mice via activation of PI3K/Akt/CREB/BDNF cascade and modulation of serotonergic pathway signaling(Elsevier B.V., 2024-08) Shafiek, Marwa S; Mekky, Radwa Y; Nassar, Noha N; El-Yamany, Mohammed F; Rabie, Mostafa AMultiple sclerosis (MS) is a chronic condition characterized by immune cell infiltration and cytokine overproduction that led to myelin sheath inflammatory assaults, thus causing axonal destruction. The former consequently provokes motor impairment and psychological disorders. Markedly, depression is one of the most prevalent lifelong comorbidities that negatively impacts the quality of life in MS patients. Vortioxetine (VTX), a multi-modal molecule prescribed to manage depression and anxiety disorder, additionally, it displays a promising neuroprotective properties against neurodegenerative diseases such as Alzheimer's and Parkinson's. To this end, the present study investigated the potential therapeutic efficacy of VTX against experimental autoimmune encephalomyelitis (EAE) model of MS in mice. Notably, treatment with VTX significantly ameliorated EAE-induced motor disability, as evident by enhanced performance in open field, rotarod and grip strength tests, alongside a reduction in immobility time during the forced swimming test, indicating a mitigation of the depressive-like behavior; outcomes that were corroborated with histological examinations and biochemical analyses. Mechanistically, VTX enhanced serotonin levels by inhibiting both serotonin transporter (SERT) and indoleamine 2,3-dioxygenase (IDO) enzyme, thereby promoting the activation of serotonin 1A (5-HT1A) receptor. The latter triggered the stimulation of phosphoinositide 3-kinase/protein kinase B (PI3K/Akt) cascade that entailed activation/phosphorylation of cAMP response element-binding protein (CREB). This activation increased brain derived neurotrophic factor (BDNF) and myelin basic protein (MBP) contents that mitigated demyelination in the corpus callosum. Furthermore, VTX suppressed phospho serine 536 nuclear factor kappa B (pS536 NF-κB p65) activity and reduced tumor necrosis factor-alpha (TNF-α) production. The results underscore VTX's beneficial effects on disease severity in EAE model of MS in mice by amending both inflammatory and neurodegenerative components of MS progression.