Browsing by Author "Mussagy, Cassamo U"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Item Halochromic properties of carotenoid-based films for smart food packaging(Food Packaging and Shelf Life, 2024-07) Mussagy, Cassamo U; Oliveira, Grazielle; Ahmad, Mushtaq; Mustafa, Ahmad; Herculano, Rondinelli D; Farias, Fabiane OCarotenoids are fat-soluble natural pigments with potent antioxidant and antibacterial properties, and their colors are sensitive to environmental pH changes (halochromic properties). Currently, natural carotenoids are utilized in the preparation of active packaging films, drawing significant attention in the field of food engineering for their potential application in smart packaging films. The use of carotenoids-based active films has shown promise in prolonging shelf life, but their application as pH-sensitive pigments in smart packaging for monitoring food freshness remains less established due to the several drawbacks (i.e., visual changes and others) discussed in this work. This critical review primarily summarizes the most used smart packaging materials, the halochromic properties of carotenoids and other pigments, and the applications of carotenoids-based films/bioplastics as pH-sensitive smart packaging for monitoring food freshness. Finally, we present to the readers our expert overview of the advantages and disadvantages associated with these natural pigments in the packaging sector.Item Is the carotenoid production from Phaffia rhodozyma yeast genuinely sustainable? a comprehensive analysis of biocompatibility, environmental assessment, and techno-economic constraints(Elsevier Ltd, 2024-02) Mussagy, Cassamo U; Dias, Ana C.R.V; Santos-Ebinuma, Valeria C; Sadek, M. Shaaban; Ahmad, Mushtaq; de Andrade, Cleverton R; Haddad, Felipe F; dos Santos, Jean L; Scarim, Cau ˆ e B; Pereira, Jorge F.B; Floriano, Juliana Ferreira; Herculano, Rondinelli D; Mustafa, AhmadMicroorganisms, such as yeasts, filamentous fungi, bacteria, and microalgae, have gained significant attention due to their potential in producing commercially valuable natural carotenoids. In recent years, Phaffia rhodozyma yeasts have emerged as intriguing non-conventional sources of carotenoids, particularly astaxanthin and β-carotene. However, the shift from academic exploration to effective industrial implementation has been challenging to achieve. This study aims to bridge this gap by assessing various scenarios for carotenoid production and recovery. It explores the use of ionic liquids (ILs) and bio-based solvents (ethanol) to ensure safe extraction. The evaluation includes a comprehensive analysis involving Life Cycle Assessment (LCA), biocompatibility assessment, and Techno-Economic Analysis (TEA) of two integrated technologies that utilize choline-based ILs and ethanol (EtOH) for astaxanthin (+β-carotene) recovery from P. rhodozyma cells. This work evaluates the potential sustainability of integrating these alternative solvents within a yeast-based bioeconomy.Item Sustainable synthesis of 2-ethyl hexyl oleate via lipase-catalyzed esterification: A holistic simulation and cost analysis study(Elsevier B.V., 2024-07) Faisal, Shah; Sadek, M. Shaaban; Pastore, Carlo; di Bitonto, Luigi; Alshammari, Saud O; Mussagy, Cassamo U; El-Bahy, Salah M; Abdellatief, Tamer M.M; El-Bahy, Zeinhom M; Mustafa, AhmadLipase catalyzed synthesis of fatty acid esters has recently attracted much attention as it represents a cleaner production route compared to the conventional energy intensive chemical method. In this study, the technical and economic viability of 2-ethyl hexyl oleate (2-EHO) synthesis by the catalytic esterification of oleic acid (OA) and 2-ethyl hexyl alcohol (2-EHA) in a stirred tank reactor using Novozym 435 (Candida antarctica lipase B) was investigated. A conversion rate of 91% was obtained by adopting the subsequent optimized parameters: 4% enzyme amount, 2 h reaction time, 4:1 M ratio of alcohol to fatty acid, 150 rpm stirring speed, and 60 °C temperature. The lipase operational stability study showed that enzymes can be used for 30 successive cycles without significant lose in activity. The use of Aspen Plus simulator enabled the development of a detailed process flow diagram, which significantly improved the understanding of this clean production method and assessed the overall costs. A holistic cost analysis revealed a production cost of $2109 per ton of 2-EHO, thereby yielding an approximate 28% profit margin relative to prevailing market rates. Rigorous financial assessments corroborated the project's viability, substantiating a net present value (NPV) of $14.7 MM, a return on investment (ROI) of 583.91% (plant life time = 15 years), projected Payback Period stands at 6 years, and an internal rate of return (IRR) of 23%. These results confirm the technical and economic feasibility of lipase catalyzed production of 2-EHO, highlighting its potential as an environmentally and profitable approach in the synthesis of fatty acid esters.Item Tuning bio-derived solvents for the rapid solubilization of astaxanthin-rich extracts from non-conventional bacterium Paracoccus carotinifaciens(Elsevier B.V, 2024-04) Mussagy, Cassamo U; Ramos, Nataly F; Caicedo, Angie V; Farias, Fabiane O; Ahmad, Mushtaq; Mustafa, Ahmad; Raghavan, VijayaAstaxanthin (AXT) is a ketocarotenoid widely used in food, feed, and pharmaceutical industries. Its biological sourcing is preferred over chemical methods due to higher physiological and commercial value. Paracoccus carotinifaciens, an aerobic marine Gram-negative bacterium, is known for producing a carotenoid mixture with AXT as the main component. This study explores the use of bio-based solvents, both pure and mixed, for extracting AXT-rich extracts (ARE). Using COSMO-SAC, a quantum chemistry-based thermodynamic model, we assessed the AXT-solvent affinity. The ethyl acetate: acetic acid mixture (EtOAc:AA) gave the best results, with 1.41 mg/mL of ARE. The solvent selection process was evaluated through the Eco Scale to compare with conventional methods. Next, optimization of extraction conditions resulted in 3.28 mg/mL of ARE at 78 °C, 10 min, and a solid-to-liquid ratio of 0.5 g/mL. Ultrasound-assisted extraction (UAE) was employed to tuning the mass-transfer process, leading to an increase of ARE (18.9 %) in reduced processing time. Concerning the stability of ARE in the EtOAc:AA mixture, the half-life (t1/2) reached 18 and 26 days under the light and dark conditions, respectively at 25 °C. In both light and dark conditions, positive enthalpy (ΔH) values revealed an endothermic process and both entropy (ΔS) and Gibbs free energy (ΔG) values suggest that the degradation of ARE is less disordered and non-spontaneous process. The solvent mixture was effectively reused for three cycles under optimally tuned conditions without a significant decline of ARE extraction efficiency.