Browsing by Author "Ismail, Sameh H"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Item Hepatoprotective Effect of Silver Nanoparticles at Two Different Particle Sizes: Comparative Study with and without Silymarin(Multidisciplinary Digital Publishing Institute (MDPI), 2022-06-30) Elfaky, Mahmoud A; Sirwi, Alaa; Ismail, Sameh H; Awad, Heba H; Gad, Sameh SSilver nanoparticles have been used for numerous therapeutic purposes because of their increased biodegradability and bioavailability, yet their toxicity remains questionable as they are known to interact easily with biological systems because of their small size. This study aimed to investigate and compare the effect of silver nanoparticles’ particle size in terms of their potential hazard, as well as their potential protective effect in an LPS-induced hepatotoxicity model. Liver slices were obtained from Sprague Dawley adult male rats, and the thickness of the slices was optimized to 150 µm. Under regulated physiological circumstances, freshly cut liver slices were divided into six different groups; GP1: normal, GP2: LPS (control), GP3: LPS + AgNpL (positive control), GP4: LPS + silymarin (standard treatment), GP5: LPS + AgNpS + silymarin (treatment I), GP6: LPS + AgNpL + silymarin (treatment II). After 24 h of incubation, the plates were gently removed, and the supernatant and tissue homogenate were all collected and then subjected to the following biochemical parameters: Cox2, NO, IL-6, and TNF-α. The LPS elicited marked hepatic tissue injury manifested by elevated cytokines and proinflammatory markers. Both small silver nanoparticles and large silver nanoparticles efficiently attenuated LPS hepatotoxicity, mainly via preserving the cytokines’ level and diminishing the inflammatory pathways. In conclusion, large silver nanoparticles exhibited effective hepatoprotective capabilities over small silver nanoparticles.Item Nanoparticles: A New Approach for treatment of bacterial and viral hepatic infections via modulating oxidative stress and DNA fragmentation(Academic Press Inc., 2022-06) Gad, Sameh S; Abdelrahim, Dina S; Ismail, Sameh H; Ibrahim, Sherine MBackground: Nanoparticles are recently playing a potential role in improving drug uptake and the treatment of diseases. A variety of nanoparticles, such as selenium nanoparticles (SeNPs) and Silver nanoparticles (AgNPs) have been used as drug carriers in various ways for treatment of cancers and liver diseases. Our aim in this study is to investigate the ability of AgNPs and SeNPs to target and treat the viral and bacterial infection of liver in rats and cell lines. Methods: For assessment of antioxidant activity of silver nanoparticles, six adult male albino rats were included in this study, liver slices were taken and assigned to 6 groups. Markers of hepatic functions, oxidative stress and inflammation in liver slices are carried out. While for assessment of antiviral activity of SeNPs, HBV-replicating human cell line HepG2 and normal human cell lines were used, hepatic and inflammatory alterations are determined through quantitative polymerase chain reaction (PCR) and comet assay techniques. Results: The effect of Ag-NPs on interleukin-6 (IL-6) and tumor necrosis factor (TNF-α) levels were reduced in different treated groups with Ag-NPs compared with the control and diseased groups. On the other hand, SeNPs revealed significant alterations in the inflammatory markers as well as DNA damage in the treated HBV- human cell line HepG2 compared to the diseased ones. Conclusion: Silver nanoparticles have the ability for producing various hepatic alterations and can inhibit the proliferation of hepatic stellate cells (HSCs) in a dose and size dependent manner. On the other hand, SeNPs showed excellent selectivity towards viral cells in the HepG2 cell lines. Both Ag-NPs and SeNPs might be a promising drug design for treating viral and bacterial liver diseases.Item Nanotechnology applications for treatment of hepatic infections via modulating Hepatic histopathological and DNA alterations(Academic Press Inc., 2022-06-17) Gad, Sameh S; Abdelrahim, Dina S; Ismail, Sameh H; Ibrahim, Sherine MBackground: Nanoparticles are recently playing a potential role in improving drug uptake and the treatment of diseases. A variety of nanoparticles, such as selenium nanoparticles (SeNPs) and Silver nanoparticles (AgNPs) have been used as drug carriers in various ways for treatment of cancers and liver diseases. Our aim in this study is to investigate the ability of AgNPs and SeNPs to target and treat the viral and bacterial infection of liver in rats and cell lines. Methods: For assessment of antioxidant activity of silver nanoparticles, six adult male albino rats were included in this study, liver slices were taken and assigned to 6 groups. Markers of hepatic functions, oxidative stress and inflammation in liver slices are carried out. While for assessment of antiviral activity of SeNPs, HBV-replicating human cell line HepG2 and normal human cell lines were used, hepatic and inflammatory alterations are determined through quantitative polymerase chain reaction (PCR) and comet assay techniques. Results: The effect of Ag-NPs on interleukin-6 (IL-6) and tumor necrosis factor (TNF-α) levels were reduced in different treated groups with Ag-NPs compared with the control and diseased groups. On the other hand, SeNPs revealed significant alterations in the inflammatory markers as well as DNA damage in the treated HBV- human cell line HepG2 compared to the diseased ones. Conclusion: Silver nanoparticles have the ability for producing various hepatic alterations and can inhibit the proliferation of hepatic stellate cells (HSCs) in a dose and size dependent manner. On the other hand, SeNPs showed excellent selectivity towards viral cells in the HepG2 cell lines. Both Ag-NPs and SeNPs might be a promising drug design for treating viral and bacterial liver diseases.Item Selenium and silver nanoparticles: A new approach for treatment of bacterial and viral hepatic infections via modulating oxidative stress and DNA fragmentation(Wiely, 09/12/2021) Gad, Sameh S; Abdelrahim, Dina S; Ismail, Sameh H; Ibrahim, Sherine MNanoparticles are recently playing a potential role in improving drug uptake and the treatment of diseases. A variety of nanoparticles, such as selenium nanoparticles (SeNPs) and silver nanoparticles (AgNPs) have been used as drug carriers in various ways for treatment of cancers and liver diseases. Our aim in this study is to investigate the ability of AgNPs and SeNPs to target and treat the viral and bacterial infection of the liver in rats and cell lines. For assessment of antioxidant activity of AgNPs in rats with induced liver bacterial infection, six adult male albino rats were included in this study, liver slices were taken and assigned to 6 groups. Markers of hepatic functions, oxidative stress, and inflammation in liver slices are carried out. Although for assessment of antiviral activity of SeNPs, hepatitis B virus transfected (HBV)‐replicating human cell line HepG2 and normal hepatocyte cells were used, hepatic and inflammatory alterations are determined through quantitative polymerase chain reaction and comet assay techniques. The effect of AgNPs on interleukin‐6 and tumor necrosis factor levels were reduced in different treated groups with AgNPs compared with the control and diseased groups. On the other hand, SeNPs revealed significant alterations in the inflammatory markers as well as DNA damage in the treated HBV‐human cell line HepG2 compared to the diseased ones. AgNPs have the ability for producing various hepatic alterations and can inhibit the proliferation of hepatic stellate cells (HSCs) in a dose and size‐dependent manner. On the other hand, SeNPs showed excellent selectivity towards viral cells in the HepG2 cell lines. Both AgNPs and SeNPs might be promising drug designs for treating viral and bacterial liver diseases.