Browsing by Author "Imai, Teruko"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Item Development of simultaneous quantification method of loteprednol etabonate (LE) and its acidic metabolites, and analysis of LE metabolism in rat(Taylor & Francis, 2019) Samir, Ahmed; Kage, Ayano; Ohura, Kayoko; Imai, TerukoLoteprednol etabonate (LE) is a soft corticosteroid with two labile ester bonds at 17α- and 17β-positions. Its corticosteroidal activity disappears upon hydrolysis of either ester bond. Hydrolysis of both ester bonds produces the inactive metabolite, Δ1-cortienic acid (Δ1-CA). The simple high-performance liquid chromatography method using acetic acid gradient was developed for the simultaneous determination of LE and its acidic metabolites. LE was hydrolyzed in rat plasma with a half-life of 9 min. However, LE hydrolysis was undetectable in rat liver and intestine. LE hydrolysis in rat plasma was completely inhibited by paraoxon and bis(p-nitrophenyl) phosphate, thus identifying carboxylesterase as the LE hydrolase. Rat plasma carboxylesterase had a Km of 6.7 μM for LE. In contrast to the disappearance rate of LE in rat plasma, the formation rate of 17α-monoester and Δ1-CA was markedly low, and a main hydrolysate of LE was not detected in rat plasma. The metabolism of LE proceeded via different pathways in human and rat plasma. LE was slowly hydrolyzed by paraoxonase in human plasma to 17α-monoester with a half-life of 12 h, but by carboxylesterase in rat plasma to yield undetectable products, presumed to include the unstable 17β-monoester.Item Identification of esterase involved in the metabolism of two corticosteroid soft drugs(Elsevier, 2017) Samir, Ahmed; Bodor, Nicholas; Imai, TerukoThe soft drug approach is successful in obtaining high local therapeutic efficacy without systemic adverse effects, because soft drugs are designed to be bioconverted to inactive form by hydrolytic enzymes in systemic circulation. However, there is little information about the exact nature of these metabolic enzymes. In this study, the human enzymes for biotransformation of soft drugs were investigated. Loteprednol etabonate (LE) and etiprednol dicloacetate (ED) were designed from Δ1-cortienic acid (Δ1-CA), the inactive metabolite of prednisolone, by introducing two labile ester bonds to restore the corticosteroidal activity. We found that LE and ED were mainly deactivated in human plasma rather than the liver. Inactive monoesters were produced, but the second hydrolysis to Δ1-CA was much slower. ED was hydrolyzed 10 times faster than LE in plasma (t1/2 = 1.35 ± 0.08, 12.07 ± 0.52 h respectively). Paraoxonase 1 that attached with high density lipoprotein (HDL) was found to be the major hydrolase for LE and ED in human plasma as demonstrated by enzyme inhibition and stimulation experiments and the hydrolysis in lipoproteins-rich plasma fractions. Human serum albumin (HSA) showed slight hydrolase activity against ED but not LE. LE was slowly hydrolyzed in liver (clearance: 0.21 ± 0.04 and 2.41 ± 0.13 ml/h/kg in liver and plasma, respectively) but ED wasn’t hydrolyzed at all, so LE has superior metabolism in two sites. The difficult diffusion of HDL into tissues from blood suggests the stable presence of LE at the administration site, while ED might be deactivated by its relatively rapid chemical hydrolysis and hydrolase activity of HSA, in the interstitial fluid of the administration tissue. Moreover, deactivation in plasma and strong protein binding (around 98%) minimize the adverse effects of LE and ED in the systemic circulation.Item Identification of Major Esterase Involved in Hydrolysis of Soft Anticholinergic (2R3’R-SGM) Designed From Glycopyrrolate in Human and Rat Tissues(Elsevier, 2019) Samir, Ahmed; Ohura, Kayoko; Bodor, Nicholas; Imai, TerukoThe glycopyrrolate soft analog, SGM, designed to be easily hydrolyzed into the significantly less active zwitterionic metabolite, SGa, typifies soft drug that reduces systemic side effects (a problem often seen with traditional anticholinergics) following local administration. In this study, hydrolysis of 2R3’R-SGM, the highest pharmacologically active stereoisomer of SGM, was investigated in human and rat tissues. In both species, 2R3’R-SGM was metabolized to 2R3’R-SGa in plasma but was stable in liver and intestine. The half-life of 2R3’R-SGM was found to be 16.9 min and 9.8 min in human and rat plasma, respectively. The enzyme inhibition and stimulation experiments showed that plasma paraoxonase 1 (PON1) is responsible for the hydrolysis of 2R3’R-SGM in humans and rats. The PON1-mediated hydrolysis of 2R3’R-SGM was confirmed in the lipoprotein-rich fractions of human plasma. As PON1 is naturally attached to high-density lipoprotein, it might be absent in topical tissues where 2R3’R-SGM is applied, supporting its local stability and efficacy. The metabolic behavior of 2R3’R-SGM indicates that it is an ideal soft drug to be detoxified as soon as it moves into systemic circulation. Furthermore, the similarity of 2R3’R-SGM metabolism in humans and rats showed that the rat is a suitable animal for preclinical study.Item A novel quantification method for serine hydrolases in cellular expression system using fluorophosphonate-biotin probe(Elsevier, 2018) Abdel-Daim, Amira; Ohura, Kayoko; Imai, TerukoIn the present study, we established a quantitative western blotting method to measure the expression level of recombinant serine hydrolases based on their catalytic mechanism. Fluorophosphonate (FP)-biotin was selected as a universal probe to quantify their expression levels, since FP moiety irreversibly inhibits serine hydrolases through strong stoichiometric binding to active serine residue. The linearity of detection using FP-biotin was assessed on three serine hydrolases; human carboxylesterase (CES) 1, butyrylcholinesterase and porcine liver esterases (PLE). Similar response signals were obtained from the equimolar concentrations of these enzymes and excellent linearity was observed at the range of 0.4–3.4 pmol/lane (r2 > 0.99). Accuracy and precision of the proposed method were proved using PLE with recovery of 97.1–107.2% and relative standard deviation of 5.56%. PLE was selected as a calibration standard because of its high stability and commercial availability. As an application of the developed method, we measured the expression levels of four recombinant CES isozymes from human and cynomolgus macaque in S9 fraction of HEK293 cell homogenates. The expression levels of human CES1 and CES2, and cynomolgus macaque CES1 and CES2 were 2.51 ± 0.1, 1.63 ± 0.17, 0.79 ± 0.09 and 1.37 ± 0.13 pmol/5 μg S9 protein, respectively. Based on these determinations, their hydrolytic activities were accurately assessed. Cynomolgus CESs showed lower hydrolysis activities for p-nitrophenyl esters than human CESs. The hydrolase activities of CES2 isozymes were higher than CES1 in both species. Three to five folds faster hydrolysis for p-nitrophenyl butyrate than p-nitrophenyl acetate was observed in all CES isozymes except of cynomolgus CES1 that showed nearly same hydrolysis for both substrates. The provided method could be widely used for universal quantitative analysis of recombinant serine hydrolases.