Browsing by Author "Faisal, Shah"
Now showing 1 - 6 of 6
- Results Per Page
- Sort Options
Item Eco-friendly isopropyl myristate production in a fixed bed reactor: Leveraging energy-saving enzymatic techniques with a comprehensive evaluation of techno-economic feasibility(Elsevier Ltd, 2024-06) Mustafa, Ahmad; Sadek, M. Shaaban; Abou Taleb, Manal F; Munir, Mamoona; Kutlu, Ozben; Pastore, Carlo; Bitonto, Luigi di; Faisal, Shah; Hammad, Hossam; Ibrahim, Mohamed M; Abdellatief, Tamer M.M; Bokhari, Awais; Samuel, Olusegun David; Inayat, Abrar; El-Bahy, Zeinhom MThis study aims to develop a straightforward, eco-friendly, and energy-saving approach for producing isopropyl myristate (IPM) through lipase-catalyzed esterification in a fixed bed reactor. The reaction between isopropyl alcohol and myristic acid was catalyzed using Novozym 435. Response Surface Methodology (RSM) was utilized to examine the interaction of various reaction parameters on the yield of IPM. The highest observed and predicted conversion rates were 95 % and 94.2 %, respectively. The optimum conditions included a molar ratio of isopropyl alcohol to myristic acid of 15:1, a time of 12 h, and a flow rate of 1.25 ml/min. The synthesized IPM was isolated and comprehensively characterized using GC–MS, FTIR, 1H, and 13C NMR techniques. To further validate the applicability of this method, a Process Simulation Diagram (PSD) was developed using ASPEN PLUS software to simulate IPM production under the optimized conditions. Economic analysis revealed a positive net present value (NPV) of $169,664,820.33 and a return on investment (ROI) of 536.52 %, indicating that this sustainable approach offers low investment risks and high profitability.Item Has the time finally come for green oleochemicals and biodiesel production using large-scale enzyme technologies? Current status and new developments(Elsevier Inc., 2023-10) Mustafa, Ahmad; Faisal, Shah; Ahmed, Inas A; Munir, Mamoona; Cipolatti, Eliane Pereira; Manoel, Evelin Andrade; Pastore, Carlo; di Bitonto, Luigi; Hanelt, Dieter; Nitbani, Febri Odel; El-Bahy, Zeinhom M; Inayat, Abrar; Abdellatief, Tamer M.M; Tonova, Konstantza; Bokhari, Awais; Abomohra, AbdelfatahWith the growth of the chemical industry over the last decade, the need for cheaper (and more environmentally friendly) alternatives to petrochemicals of ever-increasing cost has grown steadily. Oleochemicals and biodiesel (OC/BD) are considered as green alternatives to petroleum derivatives, because they come from renewable oils and fats. OC/BD are currently produced by the traditional energy intensive chemical catalyzed methods, which have several economic and environmental drawbacks. For these reasons, the enzymatic production of OC/BD has attracted a growing attention for their greener pathway with respect to the chemically catalyzed processes. Lipase-catalyzed processes have a low energy requirement, since reactions are performed under atmospheric pressure and mild temperature and without the creation of side reactions. Furthermore, utilization of enzyme catalysts offers many advantages such as reducing the initial capital investment due to simplified downstream processing steps. Despite all the previous advantages, however, the high cost of lipases restricted their large-scale utilization. In the past decade, efforts have been made to reduce the cost of the enzymatic-catalyzed synthesis of OC/BD. However, most previous studies have studied only the technical feasibility of the lipase-catalyzed re- actions and overlocked the economic viability. This review critically discusses the factors affecting the promotion of the economic feasibility of the enzymatic processes from the lab to large scale. These include reactor configuration, type of feedstock, conditions optimization, immobilization, lipase-producing microorganismsItem Has the time finally come for green oleochemicals and biodiesel production using large-scale enzyme technologies? Current status and new developments(Elsevier Inc, 2023-12) Mustafa, Ahmad; Faisal, Shah; Ahmed, Inas A; Munir, Mamoona; Cipolatti, Eliane Pereira; Manoel, Evelin Andrade; Pastore, Carlo; Bitonto, Luigi di; Hanelt, Dieter; Nitbani, Febri Odel; El-Bahy, Zeinhom M; Inayat, Abrar; Abdellatief, Tamer M.M; Tonova, Konstantza; Bokhari, Awais; Abomohra, AbdelfatahWith the growth of the chemical industry over the last decade, the need for cheaper (and more environmentally friendly) alternatives to petrochemicals of ever-increasing cost has grown steadily. Oleochemicals and biodiesel (OC/BD) are considered as green alternatives to petroleum derivatives, because they come from renewable oils and fats. OC/BD are currently produced by the traditional energy intensive chemical catalyzed methods, which have several economic and environmental drawbacks. For these reasons, the enzymatic production of OC/BD has attracted a growing attention for their greener pathway with respect to the chemically catalyzed processes. Lipase-catalyzed processes have a low energy requirement, since reactions are performed under atmospheric pressure and mild temperature and without the creation of side reactions. Furthermore, utilization of enzyme catalysts offers many advantages such as reducing the initial capital investment due to simplified downstream processing steps. Despite all the previous advantages, however, the high cost of lipases restricted their large-scale utilization. In the past decade, efforts have been made to reduce the cost of the enzymatic-catalyzed synthesis of OC/BD. However, most previous studies have studied only the technical feasibility of the lipase-catalyzed reactions and overlocked the economic viability. This review critically discusses the factors affecting the promotion of the economic feasibility of the enzymatic processes from the lab to large scale. These include reactor configuration, type of feedstock, conditions optimization, immobilization, lipase-producing microorganisms.Item Innovative modification process of a natural gas power plant using self-sufficient waste heat recovery and flue gas utilization for a CCHP-methanol generation application: A comprehensive multi-variable feasibility study(Institution of Chemical Engineers, 2024-01) Faisal, Shah; Abbas, Amir; Eladeb, Aboulbaba; Agrawal, Manoj Kumar; Muhammad, Taseer; Ayadi, Mohamed; Ghachem, Kaouther; Kolsi, Lioua; Wang, Min; Mustafa, AhmadWaste heat recovery holds significant importance in the context of natural gas power plants, as it facilitates the utilization of energy loss, leading to enhanced overall performance and mitigating adverse environmental effects. By harnessing and employing waste heat, power plants possess the capability to modify and optimize their operation, making a substantial contribution toward sustainable power/energy generation. Therefore, this study proposes a novel and eco-friendly approach to utilizing the flue gas emitted by a natural gas power plant. In addition to recovering waste heat, this method involves harnessing the flue gas for methanol production. The proposed system consists of an organic Rankine cycle, and absorption chiller, heating provider units, an electrolyzer for hydrogen generation, and a methanol synthesis unit. The novel method is implemented through computer-aided simulation using the Aspen HYSYS software and is subjected to an extensive analysis encompassing energy, exergy, environmental, and economic viewpoints. The simulation results exhibit producing 2712 kg/h of methanol with a purity of 99.97 mol%, 395.67 kg/s of hot water, 378 kg/s of chilled water, and 12253.57 kW of power. In this process, the energy and exergy efficiencies are 94.35% and 31.74%, respectively. Parametric study results demonstrate that reducing the gas turbine pressure and increasing the working fluid temperature in the evaporator of the absorption chiller cycle leads to improved exergy efficiency. Moreover, the multigeneration scenario shows a carbon dioxide footprint of 0.1564 kg/kWh and a total unit cost of product of 0.0485 $/GJ.Item Sustainable synthesis of 2-ethyl hexyl oleate via lipase-catalyzed esterification: A holistic simulation and cost analysis study(Elsevier B.V., 2024-07) Faisal, Shah; Sadek, M. Shaaban; Pastore, Carlo; di Bitonto, Luigi; Alshammari, Saud O; Mussagy, Cassamo U; El-Bahy, Salah M; Abdellatief, Tamer M.M; El-Bahy, Zeinhom M; Mustafa, AhmadLipase catalyzed synthesis of fatty acid esters has recently attracted much attention as it represents a cleaner production route compared to the conventional energy intensive chemical method. In this study, the technical and economic viability of 2-ethyl hexyl oleate (2-EHO) synthesis by the catalytic esterification of oleic acid (OA) and 2-ethyl hexyl alcohol (2-EHA) in a stirred tank reactor using Novozym 435 (Candida antarctica lipase B) was investigated. A conversion rate of 91% was obtained by adopting the subsequent optimized parameters: 4% enzyme amount, 2 h reaction time, 4:1 M ratio of alcohol to fatty acid, 150 rpm stirring speed, and 60 °C temperature. The lipase operational stability study showed that enzymes can be used for 30 successive cycles without significant lose in activity. The use of Aspen Plus simulator enabled the development of a detailed process flow diagram, which significantly improved the understanding of this clean production method and assessed the overall costs. A holistic cost analysis revealed a production cost of $2109 per ton of 2-EHO, thereby yielding an approximate 28% profit margin relative to prevailing market rates. Rigorous financial assessments corroborated the project's viability, substantiating a net present value (NPV) of $14.7 MM, a return on investment (ROI) of 583.91% (plant life time = 15 years), projected Payback Period stands at 6 years, and an internal rate of return (IRR) of 23%. These results confirm the technical and economic feasibility of lipase catalyzed production of 2-EHO, highlighting its potential as an environmentally and profitable approach in the synthesis of fatty acid esters.Item Unleashing the power of non-edible oil seeds of Ipomoea cairica for cleaner and sustainable biodiesel production using green Molybdenum Oxide (MoO3) nano catalyst(Elsevier Ltd, 2024-04) Chaudhry, Bisha; Ahmad, Mushtaq; Munir, Mamoona; Ramadan, Mohamed Fawzy; Munir, Mumna; Mussagy, Cassamo Ussemane; Faisal, Shah; Abdellatief, Tamer M.M; Mustafa, AhmadThis research aims to conduct a thorough analysis of the novel and cost-effective use of Ipomoea cairica L. seeds as a potential feedstock for green energy technologies. Ipomoea cairica L. seeds (42 % oil, 0.67 % free fatty acid content) were used as a promising source for producing sustainable biodiesel using novel green Molybdenum Oxide (MoO3) nanocatalyst. The Ipomoea cairica seeds utilized in this study serve a dual purpose: they provide feedstock for the future energy mix, and their seed shells (considered waste) are used as a starting material for synthesizing green nanocatalysts. The highest biodiesel yield of 95 % was achieved under optimal reaction conditions of 1:15 oil to methanol molar ratio, 50 °C, 120 min, and 0.4 (wt.%) catalyst loading. In order to evaluate the quality and characteristics of the resultant biodiesel and synthesized nanocatalyst, a detailed examination was conducted utilizing analytical techniques such EDX, XRD, FTIR, SEM, NMR (1H, 13C) and GC–MS analysis. The phytofabricated nanocatalyst unveils highest recyclability (up to 5 cycles), reactivity, stability and efficiency during transesterification operations. The produced biodiesel was also optimized using response surface methodology (Box-Behnken Design). When compared to conventional diesel, the biodiesel made from Ipomoea cairica L. seed oil showed better oxidative stability and reduced viscosity, suggesting that it might be a viable replacement for conventional fuel without compromising engine performance. Moreover, using untamed, uncultivated, and non-edible seed plants to produce biodiesel presents a chance to move toward a more sustainable and environmentally friendly energy plan.