Browsing by Author "Elsayyad, Nihal Mohamed Elmahdy"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Item Efficient lung-targeted delivery of risedronate sodium/vitamin D3 conjugated PAMAM-G5 dendrimers for managing osteoporosis: Pharmacodynamics, molecular pathways and metabolomics considerations(Elsevier Inc., 2022-09) Elsayyad, Nihal Mohamed Elmahdy; Gomaa, Iman; Salem, Mohamed A; Amer, Reham; El-Laithy, Hanan MAims: This study aims at formulating combined delivery of Risedronate sodium (RIS) and Vitamin D3 (VITD3) for augmented therapeutic outcome against osteoporosis (OP) using deep lung targeted PAMAM-G5-NH2 dendrimers to minimize RIS gastrointestinal side effects and enhance both drugs bioavailability through absorption from the alveoli directly to the blood. Methods: RIS-PAMAM-G5-NH2, VITD3-PAMAM-G5-NH2, and RIS/VITD3-PAMAM-G5-NH2 were prepared and evaluated in vitro for particle size (PS), zeta potential (ZP), %loading efficiency (%LE), morphology and FTIR. The efficacy of the RIS/VITD3-PAMAM-G5-NH2 compared to oral RIS was evaluated in OP-induced rats by comparing serum calcium, phosphorus, and computed bone mineral density (BMD) pre- and post-treatment. Additionally, a comprehensive metabolomics and molecular pathways approach was applied to find serum potential biomarkers for diagnosis and to evaluate the efficacy of inhaled RIS/VITD3-PAMAM-G5-NH2. Key findings: RIS/VITD3-PAMAM-G5-NH2 was successfully prepared with a %LE of 92.4±6.7% (RIS) and 83.2±4.4% (VIT-D3) and a PS of 252.8±34.1 adequate deep lung delivery. RIS/VITD3- PAMAM-G5-NH2 inhalation therapy was able to restore serum calcium, phosphorus, and BMD close to normal levels after 21 days of treatment in OP-induced rats. The WNT-signalling pathway and changes in the metabolite levels recovered to approximately normal levels upon treatment. Moreover, histone acetylation of the WNT-1 gene and miR-148a-3p interference proved to play a role in the regulation of the WNT-signalling pathway during OP progression and treatment. Significance: Pulmonary delivery of RIS/VITD3-PAMAM-G5-NH2 offers superior treatment for OP treatment compared to the oral route. Molecular and Metabolic pathways offer a key indicator of OP diagnosis and progression.Item Miconazole Nitrate loaded Soluplus®-Pluronic® nano-micelles as promising Drug Delivery Systems for Ocular Fungal Infections: In vitro and In vivo Considerations(A & V publication, 2022-03) Noshi, Shereen H; Basha, Mona; Awad, Ghada E. A; Elsayyad, Nihal Mohamed ElmahdyMiconazole nitrate (MN) is a broad-spectrum antifungal agent which suffers poor solubility and impermeability to the ocular tissue which limits its use in the treatment of ocular infections especially fungal keratitis, which is considered one of the most prevailing ocular infections. The current study aims to utilize polymeric mixed nano-micelles for the ocular delivery of MN using 33 full factorial design by varying the ratios of Pluronic® P123, Pluronic® F127, and Tetronic® T701 while the monitored responses were particle size, cloud point (CP), encapsulation efficiency (%EE) and %released at 6 hours (%Q6) at pH 7.4. The optimized formula was incorporated with Soluplus® (SP) to further enhance the (%EE) and the resultant formula was assessed in vitro as well as in vivo against C. albicans in treatment of induced ocular candidiasis using rabbits as a model animal. Results revealed that the optimized formula which comprised F127 and P123 in a ratio of (2:1) when incorporated with SP (SP-MPM) resulted in an increase in %EE from 35.12±3.18 to 99.19±7.03 with a particle size of 44.39±2.68nm with a sustained release profile and stability for 3 months at 4±2°C. In vivo results demonstrated the enhanced ability of SP-MPM for treatment of ocular candidiasis with enhanced % inhibition and susceptibility to C. albicans compared to 0.2% MN suspension confirmed with histopathological examination of rabbit’s eyes after 7 days of treatment with the absence of any degenerative effect to the ocular tissue. Thus, it can be concluded that SP-pluronic mixed nano-micelles offer a successful and stable ocular delivery platform for antifungal drug MN ensuring both its safety and efficacy.Item Miconazole Nitrate loaded Soluplus®-Pluronic® nano-micelles as promising Drug Delivery Systems for Ocular Fungal Infections: In vitro and In vivo Considerations(A and V Publication, 2022-07) Noshi, Shereen H; Basha, Mona; Awad, Ghada E. A; Elsayyad, Nihal Mohamed ElmahdyMiconazole nitrate (MN) is a broad-spectrum antifungal agent which suffers poor solubility and impermeability to the ocular tissue which limits its use in the treatment of ocular infections especially fungal keratitis, which is considered one of the most prevailing ocular infections. The current study aims to utilize polymeric mixed nano-micelles for the ocular delivery of MN using 33 full factorial design by varying the ratios of Pluronic® P123, Pluronic® F127, and Tetronic® T701 while the monitored responses were particle size, cloud point (CP), encapsulation efficiency (%EE) and %released at 6 hours (%Q6) at pH 7.4. The optimized formula was incorporated with Soluplus® (SP) to further enhance the (%EE) and the resultant formula was assessed in vitro as well as in vivo against C. albicans in treatment of induced ocular candidiasis using rabbits as a model animal. Results revealed that the optimized formula which comprised F127 and P123 in a ratio of (2:1) when incorporated with SP (SP-MPM) resulted in an increase in %EE from 35.12±3.18 to 99.19±7.03 with a particle size of 44.39±2.68nm with a sustained release profile and stability for 3 months at 4±2°C. In vivo results demonstrated the enhanced ability of SP-MPM for treatment of ocular candidiasis with enhanced % inhibition and susceptibility to C. albicans compared to 0.2% MN suspension confirmed with histopathological examination of rabbit’s eyes after 7 days of treatment with the absence of any degenerative effect to the ocular tissue. Thus, it can be concluded that SP-pluronic mixed nano-micelles offer a successful and stable ocular delivery platform for antifungal drug MN ensuring both its safety and efficacy. © RJPT All right reserved.Item Utilization of response surface design for development and optimization of rosuvastatin calcium-loaded nano-squarticles for hair growth stimulating VEGF and IGF production: in-vitro and in-vivo evaluation(Informa Healthcare, 2023-09) Ibrahim, Mervat Shafik; Elsayyad, Nihal Mohamed Elmahdy; Salama, Abeer; Noshi, Shereen HIntroduction Countless individuals experience negative emotions as hair loss pattern affects their self-esteem and well-being. Rosuvastatin calcium (Ca-RUV) was reported to stimulate the growth of the hair in the applied area, hence, it was selected as a potential hair loss treatment drug. Significance This study aims to develop and optimize (Ca-RUV) loaded squarticles (SQRs) and assess their ability to deliver and release Ca-RUV in the hair follicle for the promotion of hair growth. Methods A response surface design was utilized to study the effect of varying Pluronic® F68 (PF68) and the percentage of liquid lipids within the core of the SQRs and the effects of particle size, entrapment efficiency, and drug released percentage after 24 h (%Q24) were assessed. The optimized formula was subjected to DSC, XRD, and in-vivo evaluation in rats. Results SQRs stabilized by 0.8% PF68 and contained 37.5% liquid lipids showed an acceptable particle size (250 nm), drug entrapment efficiency (75%), and %Q24 (100%). The in-vivo studies illustrated the ability of the formula to regrow hair in animals after 10 days due to the elevation of the vascular endothelial growth factor (VEGF) and insulin-like growth factor 1 (IGF-1) to their normal values and by 9% and 54%, respectively, relative to standard therapy minoxidil (5%). Conclusion Thus, it can be concluded that the optimized formula of Ca-RUV loaded SQRs showed superior in-vivo results in the promotion of hair growth in a shorter period relative to the marketed product. Therefore, the formula can offer a viable option for the treatment of hair loss.