Browsing by Author "Elfaky, Mahmoud A"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Development, optimization, and antifungal assessment of ocular gel loaded with ketoconazole cubic liquid crystalline nanoparticles(Elsevier, 2021-02) Sirwi, Alaa; Elfaky, Mahmoud A; Tolba, Heba H; Shaik, Rasheed A.; Selmi, Nouf M.; Alattas, Ahlam H.; Albreki, Raghad S.; Alshreef, Nuha M.; Gad, Heba A.Ketoconazole is a drug that belongs to azole antifungal group. The current available marketed products of ketoconazole are accompanied with potential drawbacks such as short retention time at the eye surface and eye irritation. The aim of this research is to find a solution for the previously mentioned limitations through loading of ketoconazole within cubosomes (KZ-Cub) to be used as ophthalmic drug delivery systems. Cubosomes properties will help to keep the encapsulated drug in the solubilized form. Further incorporation of cubosomes into biodegradable polymer based gel could prolong the ocular retention time of the drug. Three studied independent variables included glyceryl-mono-oleate, Pluronic-F127 and Polyvinyl alcohol percentage with respect to the dispersion media, while particle size, entrapment efficiency and stability index were the dependent variables that have been evaluated. The optimized cubosomes was assessed for its in-vitro and in-vivo antifungal activity. The prepared gel loaded with KZ-Cub formula had an enhanced permeability, ocular availability, antifungal activity and significant decrease in MIC values compared to commercial one, which reflected the strong impact on the activity of KZ in the management of eye infectionItem Hepatoprotective Effect of Silver Nanoparticles at Two Different Particle Sizes: Comparative Study with and without Silymarin(Multidisciplinary Digital Publishing Institute (MDPI), 2022-06-30) Elfaky, Mahmoud A; Sirwi, Alaa; Ismail, Sameh H; Awad, Heba H; Gad, Sameh SSilver nanoparticles have been used for numerous therapeutic purposes because of their increased biodegradability and bioavailability, yet their toxicity remains questionable as they are known to interact easily with biological systems because of their small size. This study aimed to investigate and compare the effect of silver nanoparticles’ particle size in terms of their potential hazard, as well as their potential protective effect in an LPS-induced hepatotoxicity model. Liver slices were obtained from Sprague Dawley adult male rats, and the thickness of the slices was optimized to 150 µm. Under regulated physiological circumstances, freshly cut liver slices were divided into six different groups; GP1: normal, GP2: LPS (control), GP3: LPS + AgNpL (positive control), GP4: LPS + silymarin (standard treatment), GP5: LPS + AgNpS + silymarin (treatment I), GP6: LPS + AgNpL + silymarin (treatment II). After 24 h of incubation, the plates were gently removed, and the supernatant and tissue homogenate were all collected and then subjected to the following biochemical parameters: Cox2, NO, IL-6, and TNF-α. The LPS elicited marked hepatic tissue injury manifested by elevated cytokines and proinflammatory markers. Both small silver nanoparticles and large silver nanoparticles efficiently attenuated LPS hepatotoxicity, mainly via preserving the cytokines’ level and diminishing the inflammatory pathways. In conclusion, large silver nanoparticles exhibited effective hepatoprotective capabilities over small silver nanoparticles.