Browsing by Author "Eid, E. A."
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Influence of small addition of antimony (Sb) on thermal behavior, microstructural and tensile properties of Sn-9.0Zn-0.5Al Pb-free solder alloy(ELSEVIER SCIENCE SA., 2017) El Basaty, A. B.; Deghady, A. M.; Eid, E. A.Eutectic Sn-Zn alloy is considered as one of the best lead free solder alloys in microelectronic industry. That motivates our group to select different weight percentage of Antimony (Sb) (0.5, 1.0, and 1.5 wt%) as an alloying to Sn-9.0Zn-0.5 Al solder alloy. The thermal behavior, microstructure modification as well as tensile properties of the new developed solder alloys were investigated. A slight increment of the melting temperature (similar to 1 degrees C) was recorded using differential scanning calorimetry (DSC) after additions of Sb. For 1.5 wt% of Sb, two endothermic peaks at 200.8 degrees C and 201.5 degrees C were observed, which are assigned as hypoeutectic Sn-Zn composition. X-ray diffraction (XRD) measurements confirm the existence of beta-Sn phase, alpha-Zn phase, and Sb-Sn intermetallic compounds (IMCs). Scanning electron microscope (SEM) images indicate that the Sb additives refine the microstructure and form a uniform distribution of IMCs in the matrix of solder. The road-like alpha-Zn phase, Al6Zn3Sn and SbSn IMCs were clearly appeared in beta-Sn matrix, which are responsible of the enhancement in tensile strength. Moreover, alpha-Zn phases in the Sn-9Zn-0.5A1-1.5Sb alloy were modified as needle-like, broken enormously, depleted, and circle shapes. Generally, The Sb-containing alloys have higher ultimate tensile strength (UTS) and lower elongation than Sb-free solder alloy due to the solid solution and second phase dispersion strengthening effect. The relationship between UTS and temperature follow the Arrhenius law. The average activation energies (Q) were found to be 44.4 +/- 1.0 kJ/mol, and the average stress exponents (n) were usually around 5.3 +/- 0.45, which are close to pipe diffusion controlled creep in beta-Sn matrix.Item Photo-Response of Functionalized Self-Assembled Graphene Oxide on Zinc Oxide Heterostructure to UV Illumination(SPRINGEROPEN, 2016) Fouda, A. N.; El Basaty, A. B.; Eid, E. A.Convective assembly technique which is a simple and scalable method was used for coating uniform graphene oxide (GO) nanosheets on zinc oxide (ZnO) thin films. Upon UV irradiation, an enhancement in the on-off ratio was observed after functionalizing ZnO films by GO nanosheets. The calculations of on-off ratio, the device responsivity, and the external quantum efficiency were investigated and implied that the GO layer provides a stable pathway for electron transport. Structural investigations of the assembled GO and the heterostructure of GO on ZnO were performed using scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). The covered GO layer has a wide continuous area, with wrinkles and folds at the edges. In addition, the phonon lattice vibrations were investigated by Raman analysis. For GO and the heterostructure, a little change in the ratio between the D-band and G-band was found which means that no additional defects were formed within the heterostructure.