Browsing by Author "Cassamo U. Mussagy"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Integrating environmental remediation with biodiesel production from toxic non-edible oil seeds (Croton bonplandianus) using a sustainable phyto-nano catalyst(Elsevier Ltd, 2024-11-05) Ulfat Zia; Mushtaq Ahmad; Abdulaziz Abdullah Alsahli; Ikram Faiz; Shazia Sultana; Angie V. Caicedo-Paz; Cassamo U. Mussagy; Ahmad MustafaIn the current situation of the environmental uprising toxicology, rising global temperature, and energy-depleting urges to explore and discover more renewable and greener ecological-benefiting energy resources. Biobased renewable fuels generated by using waste products can help in waste management, climate change mitigation, and a low-carbon future. The main objective of this research is to produce environment-friendly and cost-effective biofuel. The potentiality of the novel, toxic, waste, and inedible feedstock Croton bonplandianus was evaluated for biodiesel synthesis through transesterification utilizing a Phyto-nano catalyst of potassium oxide prepared by Croton bonplandianus floral stalk's aqueous extract focusing on waste management. Phyto-nano catalyst characterization was done through innovative tools such as Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDS), Zeta Potential (ZP), X-Ray Diffraction (XRD), Fourier Transformed Infrared spectroscopy (FTIR), and Diffuse Reflectance Spectroscopy (DRS). The characterization results revealed that the potassium oxide phyto-nanocatalyst possesses an average nanoparticle size of 44.5 nm. This size is optimal for enhanced catalytic activity, indicating significant potential for efficient catalysis. The highest yield (94 %) of biodiesel was secured at optimized reaction conditions of catalyst quantity (0.50 wt%), reaction time (180 min), methanol: oil ratio (9:1), and reaction thermal point (70 °C). Transformation of triglycerides to methyl esters was confirmed by GC/MS, NMR, and FTIR techniques. A total of 21 methyl esters were observed in Croton bonplandianus biodiesel confirmed via GC/MS results. Evaluation of fuel properties was done and matched with international fuel standards. The conclusive remarks for the conducted research are that Croton bonplandianus has a high potential for biodiesel production by applying Phyto-nanocatalysts of potassium oxide while dealing with hazardous environmental conditions and waste management. Phyto nanocatalyst of potassium oxide can be reused and gives the same yield after several cycles of reusability, this reusability of heterogenous Phyto nanocatalyst can reduce to total cost of biodiesel production and can contribute towards circular economy.Item Techno-economic insights into one-pot bacterial astaxanthin extraction and sustainable therapeutic product development using natural solvent mixtures(Elsevier B.V, 2025-01-01) Cassamo U. Mussagy; Nataly F. Ramos; Angie V. Caicedo-Paz; Fabiane O. Farias; Ana Luísa R. Gini; Cau ˆ e B. Scarim; Paulo E. L. L. Filho; Rondinelli D. Herculano; M. Shaaban Sadek; Mushtaq Ahmad; Ahmad Mustafa; Laurent DufosséThe increasing demand for sustainable and safe products is driving the replacement of synthetic pigments with natural alternatives in the cosmetics industry. Additionally, the use of green solvents, such as natural solvent mixtures (NaSoMix), is essential to minimize the environmental impact of extraction processes. This study explores the innovative application of NaSoMix for extracting astaxanthin-rich extracts (ARE) from the bacterium Paracoccus carotinifaciens, a promising source of natural colorants and antioxidants. By employing menthol-based natural deep eutectic solvents (NaDES) combined with bio-based solvents, viz., ethyl acetate and ethanol, the research achieved remarkable ARE extraction yields of up to 1.3 mg/mL using conventional procedures. Notably, process intensification through microwave-assisted extraction resulted in a 400 % increase in ARE recovery yields compared to traditional methods. The therapeutic soaps formulated with these ARE extracts exhibited significant antioxidant activity, achieving a 75 % reduction in DPPH• free radical signals, and maintained excellent color stability over a month, with minimal perceptual changes. Safety assessments confirmed the non-irritating properties of the therapeutic soaps, with an irritation score of 0 at low ARE concentrations. Furthermore, an economic analysis revealed a highly favorable Internal Rate of Return (IRR) of 183 % and a Return on Investment (ROI) of 2890 %, underscoring the commercial viability of this sustainable approach. Overall, this study highlights the effectiveness and safety of utilizing NaSoMix for extracting high-value compounds and formulating innovative therapeutic cosmetic products, aligning with consumer preferences for natural ingredients while promoting environmental sustainability and economic feasibility.