Browsing by Author "Braoudaki, Maria"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item A Novel Epigenetic Strategy to Concurrently Block Immune Checkpoints PD-1/PD-L1 and CD155/TIGIT in Hepatocellular Carcinoma(Neoplasia Press, Inc, 2024-04) Assal, Reem A; Elemam, Noha M; Mekky, Radwa Y; Attia, Abdelrahman A; Soliman, Aya Hesham; Gomaa, Asmaa Ibrahim; Efthimiadou, Eleni K; Braoudaki, Maria; Fahmy, Sherif Ashraf; Youness, Rana ATumor microenvironment is an intricate web of stromal and immune cells creating an immune suppressive cordon around the tumor. In hepatocellular carcinoma (HCC), Tumor microenvironment is a formidable barrier towards novel immune therapeutic approaches recently evading the oncology field. In this study, the main aim was to identify the intricate immune evasion tactics mediated by HCC cells and to study the epigenetic modulation of the immune checkpoints; Programmed death-1 (PD-1)/ Programmed death-Ligand 1 (PD-L1) and T cell immunoreceptor with Ig and ITIM domains (TIGIT)/Cluster of Differentiation 155 (CD155) at the tumor-immune synapse. Thus, liver tissues, PBMCs and sera were collected from Hepatitis C Virus (HCV), HCC as well as healthy individuals. Screening was performed to PD-L1/PD-1 and CD155/TIGIT axes in HCC patients. PDL1, CD155, PD-1 and TIGIT were found to be significantly upregulated in liver tissues and peripheral blood mononuclear cells (PBMCs) of HCC patients. An array of long non-coding RNAs (lncRNAs) and microRNAs validated to regulate such immune checkpoints were screened. The lncRNAs; CCAT-1, H19, and MALAT-1 were all significantly upregulated in the sera, PBMCs, and tissues of HCC patients as compared to HCV patients and healthy controls. However, miR-944–5p, miR-105–5p, miR-486–5p, miR-506–5p, and miR-30a-5p were downregulated in the sera and liver tissues of HCC patients. On the tumor cell side, knocking down of lncRNAs—CCAT-1, MALAT-1, or H19—markedly repressed the co-expression of PD-L1 and CD155 and accordingly induced the cytotoxicity of co-cultured primary immune cells. On the immune side, ectopic expression of the under-expressed microRNAs; miR-486–5p, miR-506–5p, and miR-30a-5p significantly decreased the transcript levels of PD-1 in PBMCs with no effect on TIGIT. On the other hand, ectopic expression of miR-944–5p and miR-105–5p in PBMCs dramatically reduced the co-expression of PD-1 and TIGIT. Finally, all studied miRNAs enhanced the cytotoxic effects of PBMCs against Huh7 cells. However, miR-105–5p showed the highest augmentation for PBMCs cytotoxicity against HCC cells. In conclusion, this study highlights a novel co-targeting strategy using miR-105–5p mimics, MALAT-1, CCAT-1 and H19 siRNAs to efficiently hampers the immune checkpoints; PD-L1/PD-1 and CD155/TIGIT immune evasion properties in HCC.Item Pharmacogenomic and epigenomic approaches to untangle the enigma of IL-10 blockade in oncology(Cambridge University Press, 2024-01) Elemam, Noha M; Mekky, Radwa Y; Rashid, Gowhar; Braoudaki, Maria; Youness, Rana AThe host immune system status remains an unresolved mystery among several malignancies. An immune-compromised state or smart immune-surveillance tactics orchestrated by cancer cells are the primary cause of cancer invasion and metastasis. Taking a closer look at the tumour-immune microenvironment, a complex network and crosstalk between infiltrating immune cells and cancer cells mediated by cytokines, chemokines, exosomal mediators and shed ligands are present. Cytokines such as interleukins can influence all components of the tumour microenvironment (TME), consequently promoting or suppressing tumour invasion based on their secreting source. Interleukin-10 (IL-10) is an interlocked cytokine that has been associated with several types of malignancies and proved to have paradoxical effects. IL-10 has multiple functions on cellular and non-cellular components within the TME. In this review, the authors shed the light on the regulatory role of IL-10 in the TME of several malignant contexts. Moreover, detailed epigenomic and pharmacogenomic approaches for the regulation of IL-10 were presented and discussed.Item A Snapshot of Photoresponsive Liposomes in Cancer Chemotherapy and Immunotherapy: Opportunities and Challenges(American Chemical Society, 2023-12) Youness, Rana A; Mohamed, Adham H; Efthimiadou, Eleni K; Mekky, Radwa Y; Braoudaki, Maria; Fahmy, Sherif AshrafTo provide precise medical regimens, photonics technologies have been involved in the field of nanomedicine. Phototriggered liposomes have been cast as promising nanosystems that achieve controlled release of payloads in several pathological conditions such as cancer, autoimmune, and infectious diseases. In contrast to the conventional liposomes, this photoresponsive element greatly improves therapeutic efficacy and reduces the adverse effects of gene/drug therapy during treatment. Recently, cancer immunotherpay has been one of the hot topics in the field of oncology due to the great success and therapeutic benefits that were well-recognized by the patients. However, several side effects have been encountered due to the unmonitored augmentation of the immune system. This Review highlights the most recent advancements in the development of photoresponsive liposome nanosystems in the field of oncology, with a specific emphasis on challenges and opportunities in the field of cancer immunotherapy.