Browsing by Author "Aboshanab, Khaled M"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Item Correlation of CRISPR/Cas and Antimicrobial Resistance in Klebsiella pneumoniae Clinical Isolates Recovered from Patients in Egypt Compared to Global Strains(MDPI AG, 2023-08) Alkompoz, Amany K; Hamed, Samira M; Abu Zaid, Ahmed S; Almangour, Thamer A; Al-Agamy, Mohamed H; Aboshanab, Khaled MThe CRISPR/Cas system has been long known to interfere with the acquisition of foreign genetic elements and was recommended as a tool for fighting antimicrobial resistance. The current study aimed to explore the prevalence of the CRISPR/Cas system in Klebsiella pneumoniae isolates recovered from patients in Egypt in comparison to global strains and correlate the CRISPR/Cas to susceptibility to antimicrobial agents. A total of 181 clinical isolates were PCR-screened for cas and selected antimicrobial resistance genes (ARGs). In parallel, 888 complete genome sequences were retrieved from the NCBI database for in silico analysis. CRISPR/Cas was found in 46 (25.4%) isolates, comprising 18.8% type I-E and 6.6% type I-E*. Multidrug resistance (MDR) and extensive drug resistance (XDR) were found in 73.5% and 25.4% of the isolates, respectively. More than 95% of the CRISPR/Cas-bearing isolates were MDR (65.2%) or XDR (32.6%). No significant difference was found in the susceptibility to the tested antimicrobial agents among the CRISPR/Cas-positive and -negative isolates. The same finding was obtained for the majority of the screened ARGs. Among the published genomes, 23.2% carried CRISPR/Cas, with a higher share of I-E* (12.8%). They were confined to specific sequence types (STs), most commonly ST147, ST23, ST15, and ST14. More plasmids and ARGs were carried by the CRISPR/Cas-negative group than others, but their distribution in the two groups was not significantly different. The prevalence of some ARGs, such as blaKPC, blaTEM, and rmtB, was significantly higher among the genomes of the CRISPR/Cas- negative strains. A weak, nonsignificant positive correlation was found between the number of spacers and the number of resistance plasmids and ARGs. In conclusion, the correlation between CRISPR/Cas and susceptibility to antimicrobial agents or bearing resistance plasmids and ARGs was found to be nonsignificant. Plasmid-targeting spacers might not be naturally captured by CRISPR/Cas. Spacer match analysis is recommended to provide a clearer image of the exact behavior of CRISPR/Cas towards resistance plasmids.Item Febrile illness of bacterial etiology in a public fever hospital in Egypt: High burden of multidrug resistance and WHO priority Gram negative pathogens(European Academy of HIV/AIDS and Infectious Diseases, 2022-03) Mostafa, Shimaa H; Saleh, Sarra E; Hamed, Samira M; Aboshanab, Khaled MIntroduction Contemporary emergence of multidrug resistance (MDR) urges regular updates on circulating pathogens and their antimicrobial resistance profiles. We aimed to identify the burden of MDR and World Health Organization (WHO) priority Gram negative pathogens among patients admitted with febrile illness to Abbassia Fever Hospital, a major Public Fever Hospital in Egypt. The carbapenemase- and extended spectrum beta-lactamases (ESBLs)-encoding genes carried by the isolates were also identified. Methods A total of 9602 clinical specimens were collected from febrile patients during 2018 and 2019. The recovered bacterial isolates were examined for antimicrobial susceptibility using disk diffusion test. Susceptibility to colistin was tested using E-test. ESBLs production was phenotypically and genotypically analyzed. Results A total of 790 bacterial isolates (612 Gram negative and 178 Gram positive) were recovered. A percentage of 77.6%, and 62.9% of the Gram negative and positive isolates showed MDR phenotype, respectively. WHO priority pathogens were abundant, including carbapenem-resistant (CR) Enterobacterales (105/187; 56.1%) and CR glucose non-fermenters (82/187; 43.8%) such as: A. baumannii (55; 29.4%), P. aeruginosa (27; 14.4%). Carbapenemase- and ESBLs-encoding genes were detected in 56.1% and 30.8% of Enterobacterales and in 43.8% and 46.3% of glucose non-fermenters, respectively. Antimicrobials such as fosfomycin and chloramphenicol retained good activities against MDR Gram negative pathogens. Conclusions This study highlights the regional burden of MDR and priority Gram negative pathogens. The obtained data are of relevant medical importance for implementation of evidence-based antimicrobial stewardship programs and for tailoring the existing empirical treatment guidelines.Item Phenotypic and Genotypic Analysis of Bacterial Pathogens Recovered from Patients Diagnosed with Fever of Unknown Origin in Egypt(Multidisciplinary Digital Publishing Institute (MDPI), 2023-08) Mostafa, Shimaa H; Saleh, Sarra E; Khaleel, Eman F; Badi, Rehab Mustafa; Aboshanab, Khaled M; Hamed, Samira MFever of unknown origin (FUO) is a medical term describing fever that lasts for at least three weeks without a diagnosis being reached after extensive diagnostic evaluation. Therefore, this study aimed to identify the common pathogens causing FUO in patients admitted to Abbasia Fever Hospital in Egypt from January 2020 to December 2022, their antimicrobial susceptibility profiles, and associated resistance genes. The study also aimed to investigate the burden of multidrug-resistant (MDR) pathogens and the priority pathogens nominated by the World Health Organization (WHO) for posing the greatest threat to human health due to antibiotic resistance. During the study period, about 726 patients were diagnosed with FUO. After extensive investigations, the cause of the FUO was found to be infectious diseases in 479/726 patients (66.0%). Of them, 257 patients had positive bacterial cultures, including 202 Gram-negative isolates that comprised Klebsiella pneumoniae (85/202; 42.1%), Escherichia coli (71/202; 35.1%), Acinetobacter baumannii (26/202; 12.9%), and Pseudomonas aeruginosa (14/202; 6.9%) and 55 Gram-positive isolates, including Staphylococcus aureus (23/55; 41.8%), Streptococcus pneumoniae (7/55; 12.7%), and Enterococcus spp. (25/55; 45.5%). The MDR phenotype was shown by 68.3% and 65.5% of the Gram-negative and Gram-positive isolates, respectively. Carbapenem resistance (CR) was shown by 43.1% of the Gram-negative isolates. Of the 23 S. aureus isolates obtained from research participants, 15 (65.2%) were methicillin-resistant S. aureus (MRSA). A high-level aminoglycoside resistance (HLAR) phenotype was found in 52.0% of the Enterococcus sp. isolates. The PCR screening of resistance genes in the MDR isolates showed that blaOXA−48 was the most prevalent (84%) among the carbapenemase-coding genes, followed by blaVIM (9%) and then blaIMP (12%). The ESBL-coding genes blaTEM, blaCTX-M, aac(60 )-Ib, and blaSHV, were prevalent in 100%, 93.2%, 85,% and 53.4% of the MDR isolates, respectively. This study updates the range of bacteria that cause FUO and emphasizes the burden of multidrug resistance and priority infections in the region. The obtained data is of relevant medical importance for the implementation of evidence-based antimicrobial stewardship programs and tailoring existing empirical treatment guidelines.Item State of the art in epitope mapping and opportunities in COVID-19(Future Medicine Ltd., 2023-03) Hamed, Samira M; Sakr, Masarra M; El-Housseiny, Ghadir S; Wasfi, Reham; Aboshanab, Khaled MThe understanding of any disease calls for studying specific biological structures called epitopes. One important tool recently drawing attention and proving efficiency in both diagnosis and vaccine development is epitope mapping. Several techniques have been developed with the urge to provide precise epitope mapping for use in designing sensitive diagnostic tools and developing rpitope-based vaccines (EBVs) as well as therapeutics. In this review, we will discuss the state of the art in epitope mapping with a special emphasis on accomplishments and opportunities in combating COVID-19. These comprise SARS-CoV-2 variant analysis versus the currently available immune-based diagnostic tools and vaccines, immunological profile-based patient stratification, and finally, exploring novel epitope targets for potential prophylactic, therapeutic or diagnostic agents for COVID-19. Plain language summary: Epitope mapping is an important tool recently proving efficiency in both diagnosis and vaccine development. Several epitope mapping techniques have been developed for designing sensitive diagnostic tools and developing rpitope-based vaccines (EBVs) as well as therapeutics. In this review, we will discuss the state of the art in epitope mapping, emphasizing accomplishments and opportunities in combating COVID-19. These comprise SARS-CoV-2 variant analysis versus the currently available immune-based diagnostic tools and vaccines and exploring novel epitope targets for potential prophylactic, therapeutic or diagnostic agents for COVID-19. First draft submitted: 29 July 2022; Accepted for publication: 15 February 2023; Published online: 6 March 2023