Browsing by Author "Aboelnaga, Shimaa M"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Green-Synthesized Silver and Selenium Nanoparticles Using Berberine: A Comparative Assessment of In Vitro Anticancer Potential on Human Hepatocellular Carcinoma Cell Line (HepG2)(Multidisciplinary Digital Publishing Institute (MDPI), 2024-02) Khaled, Azza M; Othman, Mohamed S; Obeidat, Sofian T; Aleid, Ghada M; Aboelnaga, Shimaa M; Fehaid, Alaa; Hathout, Heba M. R; Bakkar, Ashraf A; Abdel Moneim, Ahmed E; El-Garawani, Islam M; Morsi, Dalia SA well-known natural ingredient found in several medicinal plants, berberine (Ber), has been shown to have anticancer properties against a range of malignancies. The limited solubility and bioavailability of berberine can be addressed using Ber-loaded nanoparticles. In this study, we compared the in vitro cytotoxic effects of both Ber-loaded silver nanoparticles (Ber-AgNPs) and Ber-loaded selenium nanoparticles (Ber-SeNPs) in the human liver cancer cell line (HepG2) and mouse normal liver cells (BNL). The IC50 values in HepG2 for berberine, Ber-AgNPs, Ber-SeNPs, and cisplatin were 26.69, 1.16, 0.04, and 0.33 µg/mL, respectively. Our results show that Ber and its Ag and Se nanoparticles exerted a good antitumor effect against HepG2 cells by inducing apoptosis via upregulating p53, Bax, cytosolic cytochrome C levels, and caspase-3 activity, and the down-regulation of Bcl-2 levels. Similarly, incubation with Ber and both Ber-NPs (Ag and Se) led to a significant dose-dependent elevation in inflammatory markers’ (TNF-α, NF-κB, and COX-2) levels compared to the control group. In addition, it led to the arrest of the G1 cell cycle by depleting the expression of cyclin D1 and CDK-2 mRNA. Furthermore, Ber and both Ber-NPs (Ag and Se) caused a significant dose-dependent increase in LDH activity in HepG2 cells. Furthermore, our findings offer evidence that Ber and its nanoparticles intensified oxidative stress in HepG2 cells. Furthermore, the migration rate of cells subjected to berberine and its nanoforms was notably decreased compared to that of control cells. It can be inferred that Ber nanoparticles exhibited superior anticancer efficacy against HepG2 compared to unprocessed Ber, perhaps due to their improved solubility and bioavailability. Furthermore, Ber-SeNPs exhibited greater efficacy than Ber-AgNPs, possibly as a result of the inherent anticancer characteristics of selenium.Item New Cholinesterase inhibitors based on 1,2,4-triazole bearing benzenesulfonohydrazide skeleton: Synthesis, in vitro and in silico studies(Elsevier B.V, 2024-08) Othman, Mohamed S; Naz, Haseena; Rahim, Fazal; Ullah, Hayat; Hussain, Rafaqat; Taha, Muhammad; Khan, Shoaib; Fareid, Mohamed A; Aboelnaga, Shimaa M; Altaleb, Anas T; Iqbal, Rashid; Shah, Syed Adnan AliWe have synthesized 1,2,4-triazole bearing benzenesulfonohydrazide analogues (1–21), characterized through different spectroscopic techniques such as 1HNMR, 13CNMR, HREI-MS and were evaluated against Acetylcholinesterase (AChE) and Butyrylcholinesterase (BuChE) enzymes. All the newly synthesized analogues showed excellent to good inhibition potential with IC50 values ranged from 0.30 ± 0.050 to 15.21 ± 0.50 µM (against AChE) and 0.70 ± 0.050 to 18.27 ± 0.60 µM (against BuChE) as compared to the standard drug Donepezil (IC50 = 2.16 ± 0.12 and 4.5 ± 0.11 µM, respectively). Analogues 2 and 4 which were found inactive against these enzymes. However, analogues 17 (IC50 = 0.30 ± 0.050 and 0.70 ± 0.050 µM) and 13 (IC50 = 0.70 ± 0.05 and 1.70 ± 0.050 µM) were found to have potent inhibitory potentials against the targeted enzymes. Structure-activity relationship was carried out which mainly depends upon the nature, position and numbers of the substitution present on phenyl rings that may be electron withdrawing/donating. Molecular docking study was carried out to know about the binding mode of interaction of the most active site of the synthesized analogues with the targeted enzymes.Item The Potential Therapeutic Role of Green-Synthesized Selenium Nanoparticles Using Carvacrol in Human Breast Cancer MCF-7 Cells(Multidisciplinary Digital Publishing Institute (MDPI), 2023-06) Othman, Mohamed S; Aboelnaga, Shimaa M; Habotta, Ola A; Abdel Moneim, Ahmed Email; Hussein, Manal MThe disadvantages and side effects of currently available breast cancer (BC) therapies have compelled researchers to seek new therapeutic strategies. This study was designed to investigate the effect of selenium nanoparticles biosynthesized with carvacrol (SeNPs-CV) on breast cancer (MCF-7) cell lines and to explore possible underlying pathways. Flow cytometry, MTT assays, and various biochemical techniques were used to evaluate the anti-proliferative effects of SeNPs-CV on MCF-7 cells. Cytotoxicity assays showed that treatment with SeNPs-CV could effectively reduce MCF-7 cell proliferation and viability in a dose-dependent manner. However, SeNPs-CV had no cytotoxic effect against Vero cells. Furthermore, SeNPs-CV showed better anticancer activity than metal nanoparticles of selenium evidenced by the lower IC50 obtained in MCF-7 cells (8.3 µg/mL versus 41.6 µg/mL, respectively). Treatment with SeNPs-CV directly targeted Bcl-2, Bax, and caspase-3, leading to the mitochondrial leakage of cytochrome C and subsequent activation of the apoptotic cascade in MCF-7 cells. In addition, MCF-7 cells treated with SeNPs-CV exhibited elevated levels of oxidative stress, as indicated by noticeable rises in 8-OHDG, ROS, NO, and LPO, paralleled by significant exhaustion in GSH levels and antioxidant enzymes activity. In addition, the administration of SeNPs-CV induced the inflammatory mediator IL-1β and downregulated the expression of cell-proliferating nuclear antigen (PCNA) in MCF-7 cells, which plays a critical role in apoptosis. Therefore, the ability of SeNPs-CV to fight BC may be due to its ability to induce oxidative stress, inflammation, and apoptosis in tumor cells. These findings demonstrate the therapeutic potential of Se nanoparticles conjugated with CV, which may provide a novel approach for combination chemotherapy in BC.