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Abstract: A new series of 1-phenyl-3-(4-(pyridin-3-yl)phenyl)urea derivatives were synthesized and
subjected to in vitro antiproliferative screening against National Cancer Institute (NCI)-60 human
cancer cell lines of nine different cancer types. Fourteen compounds 5a–n were synthesized with three
different solvent exposure moieties (4-hydroxylmethylpiperidinyl and trimethoxyphenyloxy and
4-hydroxyethylpiperazine) attached to the core structure. Substituents with different π and σ values
were added on the terminal phenyl group. Compounds 5a–e with a 4-hydroxymethylpiperidine
moiety showed broad-spectrum antiproliferative activity with higher mean percentage inhibition
values over the 60-cell line panel at 10 µM concentration. Compound 5a elicited lethal rather than
inhibition effects on SK-MEL-5 melanoma cell line, 786-0, A498, RXF 393 renal cancer cell lines,
and MDA-MB-468 breast cancer cell line. Two compounds, 5a and 5d showed promising mean
growth inhibitions and thus were further tested at five-dose mode to determine median inhibitory
concentration (IC50) values. The data revealed that urea compounds 5a and 5d are the most active
derivatives, with significant efficacies and superior potencies than paclitaxel in 21 different cancer
cell lines belonging particularly to renal cancer and melanoma cell lines. Moreover, 5a and 5d had
superior potencies than gefitinib in 38 and 34 cancer cell lines, respectively, particularly colon cancer,
breast cancer and melanoma cell lines.
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1. Introduction

Cancer in its essence is a genetic disease; accumulation of inherited and/or acquired defects in
cell proliferation and survival regulatory genes is responsible for cancer precipitation [1]. Oncogenes,
tumor-suppressor genes and stability genes are the three types of genes in which variations are the
possible causes of cancer. These defects are required for a clinically significant cancer to occur and
drive transformation of normal cell into cancerous ones [2]. Despite the availability of developed
drugs including targeted tumor therapies, the World Health Organization (WHO) has announced the
great possibility that the universal cancer burden will increase by 15 million new cases per year by
2020, unless further preventive measures are considered. The developments of new anticancer drugs
signify a major objective and challenge for modern medicinal chemistry.

The urea chemotype is one of the most interesting scaffold-based compounds in the treatment of
cancer diseases [3]. Apart from anticancer activity, other biological activities have been reported
for urea derivatives such as antidiabetic [4–6], antitubercular [7–9], antimicrobial [10–12], and
anti-inflammatory activities [10,11,13]. Much attention has been paid to the chemistry and biological
activities of the diarylurea nucleus. Several compounds possessing diarylurea scaffolds have been
recently reported as potential antiproliferative agents [12,14–20].

In the present study, a new series of diarylurea derivatives possessing 1-phenyl-3-
(4-(pyridin-3-yl)phenyl)urea moieties were designed, synthesized and tested for their in vitro
antiproliferative activities against National Cancer Institute (NCI)-60 cancer cell lines. Various
substituted terminal phenyl moieties were introduced to investigate the influence of electronic and
hydrophobic effects on the antiproliferative activity of the titled compounds. Furthermore, three
hydrogen bondable moieties were introduced to the internal phenyl moiety to explore whether the
addition of such moieties would result in a significant increase in anticancer activity.

2. Results and Discussion

2.1. Chemistry

Synthesis of the target compounds 5a–n was achieved through the pathway illustrated in
Scheme 1. Regioselective nucleophilic aromatic substitution of 2-fluoro-4-bromonitrobenzene (1)
with three hydrogen bondable moieties (4-hydroxylmethylpiperidinyl or trimethoxyphenyloxy or
4-hydroxyethylpiperazine) was the first step. The nitro group in 2-fluoro-4-bromonitrobenzene
increases the reactivity of the aryl halide by decreasing the energy of the transition state according to
the Hammond postulates and stabilizes the intermediate carbanion, furthermore the fluorine atom is
more electronegative and then its reactivity is much higher than that of the bromine atom. Therefore,
the substitution reaction was directed to the ortho position of the nitro group rather than the para
position forming monosubstituted nitrobenzenes 2a–c (Scheme 1).

The negatively polarized carbon-metal bond is well suited for the purpose of carbon-carbon
forming reactions. Monosubstituted nitrobenzenes 2a–c were subjected to coupling reactions with
3-pyridineboronic acid in the presence of bis(triphenylphosphine)palladium(II) dichloride to afford
disubstituted nitrobenzenes 3a–c.

The structure of the newly synthesized compounds 3a–c was confirmed on the basis of
1H-NMR and 13C-NMR spectroscopic data. The 1H-NMR spectra of compound 3c exhibited triplet
signals at δ 2.67 ppm and 3.69 ppm (2H) corresponding to NCH2CH2OH. Triplet signals at δ

2.748 ppm and 3.21 ppm (4H) correspond to the piperazine moiety (NCH2CH2N)2 grouping. In
addition, characteristic signals corresponding to aromatic protons were observed. The newly formed
disubstituted nitrobenzenes 3a–c were subjected to palladium-catalyzed reduction to the corresponding
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amines 4a–c. The 1H-NMR spectra of compounds 4a–c exhibited a multiplet signal at δ 7.29–7.30 ppm
(2H) corresponding to the NH2 group. Finally, nucleophilic attach of the anilinic amino group on the
electrophilic carbon of a phenyl isocyanate group was followed to successfully get the final target
diaryl urea compounds 5a–n in yields between 64% and 91%. The 1H-NMR of all final compounds
5a–n showed additional signals at δ value ranges of 7–9 ppm assigned to the terminal phenyl moiety
added through the final last step of the synthetic scheme through reaction of different arylisocyanates
with the semifinal compounds 4a–c. Moreover, the 1H-NMR spectra of the final urea derivatives 5a–n
indicated the presence of two broad singlets appeared at around δ 9.54 ppm for NH proton attached
to the internal phenyl ring whereas other NH proton attached to terminal ring appeared at around δ

8.72 ppm.

Molecules 2017, 22, x FOR PEER REVIEW 3 of 13 

 

electrophilic carbon of a phenyl isocyanate group was followed to successfully get the final target 
diaryl urea compounds 5a–n in yields between 64% and 91%. The 1H-NMR of all final compounds 
5a–n showed additional signals at δ value ranges of 7–9 ppm assigned to the terminal phenyl moiety 
added through the final last step of the synthetic scheme through reaction of different arylisocyanates 
with the semifinal compounds 4a–c. Moreover, the 1H-NMR spectra of the final urea derivatives 5a–
n indicated the presence of two broad singlets appeared at around δ 9.54 ppm for NH proton attached 
to the internal phenyl ring whereas other NH proton attached to terminal ring appeared at around δ 
8.72 ppm. 

 
Reagents and reaction conditions: (i) R1H, K2CO3, DMF, 90 °C, 5 h; (ii) Pd(PPh3)2Cl2, K2CO3, 95 °C, 3 h; 
(iii) 10% Pd/C, H2, ethanol, 9 h; (iv) aryl isocyanate, THF, at room temperature. 

Comp. No. R1 R2 R3

5a 4-hydroxymethylpiperidinyl 4-CH3 H 

5b 4-CF3 H 

5c 4-OCH3 H 

5d 3-Cl 4-CF3 

5e 2-Cl 4-Cl 

5f 3,4,5-trimethoxyphenyl 2-F 2-F 

5g 4-OCH3 H 

5h 2-F H 

5i 2-Cl 4-Cl 

5j 3-CF3 4-Cl 

5k 4-hydroxyethylpiperazinyl 2-F H 

5l 4-CH3 H 

5m 2-Cl 4-Cl 

5n 3-CF3 4-Cl 

Scheme 1. Synthetic scheme of diarylurea derivatives 5a–n. 

2.2. In Vitro Antiproliferative Activities against the NCI-60 Cell Line Panel 

2.2.1. Single Dose Testing 

The newly synthesized target compounds 5a–n were submitted to National Cancer Institute 
(NCI, Bethesda, ML, USA; www.dtp.nci.nih.gov., accessed on 4 December 2017), and the seven 
compounds 5a–g shown in Table 1 were selected on the basis of their degree of structural variation 
and computer modeling techniques for evaluation of their antineoplastic activity. The selected 
compounds were subjected to in vitro anticancer assay against tumor cells in a full panel of 60 cell 
lines taken from nine different tissues (blood, lung, colon, CNS, skin, ovary, kidney, prostate, and 
breast). The compounds were tested at a single-dose concentration of 10 µM, and the percentages of 
growth inhibition over the 58 tested cell lines were determined. 

Scheme 1. Synthetic scheme of diarylurea derivatives 5a–n.

2.2. In Vitro Antiproliferative Activities against the NCI-60 Cell Line Panel

2.2.1. Single Dose Testing

The newly synthesized target compounds 5a–n were submitted to National Cancer Institute (NCI,
Bethesda, ML, USA; www.dtp.nci.nih.gov., accessed on 4 December 2017), and the seven compounds
5a–g shown in Table 1 were selected on the basis of their degree of structural variation and computer
modeling techniques for evaluation of their antineoplastic activity. The selected compounds were
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subjected to in vitro anticancer assay against tumor cells in a full panel of 60 cell lines taken from nine
different tissues (blood, lung, colon, CNS, skin, ovary, kidney, prostate, and breast). The compounds
were tested at a single-dose concentration of 10 µM, and the percentages of growth inhibition over the
58 tested cell lines were determined.

Upon comparing the effect of hydrogen bondable moieties directly attached to internal phenyl
ring on activity, it was found that compounds 5a–e possessing a 4-hydroxymethylpiperidine group
were more active than compounds 5f–g with a 3,4,5-trimethoxyphenol. This directly reflects the
influences of such moieties on the antiproliferative activity of the title scaffold. The mean % growth of
the NCI-60 cancer cell line panel after treatment with each of the tested compounds at 10 µM is listed
in Table 1.

Table 1. Percentage growth inhibition results exerted by compounds 5a–e over the most sensitive
cell lines.

Cell Lines
Percentage Inhibition (at 10 µM)

5a 5b 5c 5d 5e

Leukemia

CCRF-CEM 90.3 82.2
HL-60(TB) 86.1 106.9 93.7

K-562 90.6 84.9 82.3
MOLT-4 82.4 95.2 100.6

RPMI-8226 80.6 87.9 90.8
SR 82.9 97.7 93.4

NSCLC

A549/ATCC 93.0
NCI-H23 96.0
NCI-H460 81.5
NCI-H522 90.7

Colon cancer

COLO 205 126.6 83.9
HCC-2998 85.9 86.1
HCT-116 91.6 87.5 88.2 81.9
HCT-15 85.2
HT29 94.3 90.2 90.8
KM12

SW-620 82.4

CNS cancer

SF-295 82.2
SF-539 98.7 84.9 81.1
SNB-19 84.7

U251 88.7

Melanoma

MDA-MB-435 95.7 84.5
SK-MEL-2 110.3
SK-MEL-28 90.6 81.3
SK-MEL-5 146.1 80.0 138.3 88.7
UACC-62 95.3

Ovarian cancer
OVCAR-3 95.3
SK-OV-3 95.7

Renal Cancer

786-0 108.7 84.4
A498 136.2 90.9 85.7 93.6

ACHN 82.7
RXF 393 134.8
TK-10 83.5
UO-31 83.0
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Table 1. Cont.

Cell Lines
Percentage Inhibition (at 10 µM)

5a 5b 5c 5d 5e

Prostate Cancer PC-3 87.6 83.4

Breast Cancer

MCF7 90.2 83.8 80.0
MDA-MB-231/ATCC 90.7 117.5 86.4

HS 578T 89.4
T-47D 94.4 82.5

MDA-MB-468 116.6 87.4

The bold figures indicate lethal effects in terms of percentage.

Compounds 5a, 5d and 5e showed higher antiproliferative activity than the corresponding
p-methoxyphenyl and p-trifluoromethylphenyl analogues 5b and 5c. It was clear that compounds
with trimethoxyphenyl derivatives are not suitable as potential anticancer agents, while those having
a piperidin-4-yl methanol moiety are promising anticancer agents. The average growth percentage
of compounds 5a, 5d and 5e which have a piperidin-4-yl methanol are 22.16%, 24.67% and 32.41%,
respectively (Table 2). Compounds 5d and 5e with disubstituted terminal phenyl rings have superior
activity than the corresponding monosubstituted derivatives against most of leukemia cell lines.
Compound 5a with an electron-donating group (methyl) showed lethal effects on the SK-MEL-5
melanoma cell line, MDA-MB-468 breast cancer cell line and three renal cancer cell lines (786-0, A498
and RXF 393). Therefore, it can be concluded that the antiproliferative activity of the tested compounds
against diverse cancer cell lines differs with the different steric and/or electronic properties of the
substituents on the terminal phenyl moiety.

Table 2. Mean percentage growth of the 60 cell lines after treatment with tested target compounds (10 µM).

Comp. No. Mean % Growth

5a 22
5b 59
5c 53
5d 24
5e 32
5f 99
5g 97

The bold figures indicate the most active compound.

The percentage inhibition values of the most active compounds against the most sensitive cell
lines are summarized in Table 2. SK-MEL-5 melanoma cell line was the most sensitive cell line to this
series of compounds. The most active compounds against SK-MEL-5 were 5a and 5c with percentage
inhibitions of 146.1% and 138.3%, respectively. K-562 leukemia and A498 renal cancer cell lines
were also sensitive to the compounds. Compounds 5a–e were active against three cell lines (K-562,
SK-MEL-5, A498), while compounds 5a and 5c showed higher potency over SK-MEL-5 (Figure 1).
Among the seven target compounds, compound 5a and 5d showed the most promising results. They
exerted broad-spectrum antiproliferative activity against different cell lines of different cancer types,
including leukemia, colon, renal and breast cancers. Therefore, these compounds could be potential
leads for the future development of broad-spectrum anticancer agents.
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Figure 1. The percentage inhibition values of compounds 5a–d against SK-MEL-5, A498 and K-562 cell lines.

Among all the tested derivatives, compounds 5a, 5d, and 5e showed the highest mean inhibitions.
The percentages of inhibition of these three compounds over each tested cell line of the NCI-60 panel
at 10-µM concentration are depicted in Figure 2.
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The three compounds 5a, 5d and 5e exerted broad-spectrum antiproliferative activities against
the NCI-60 human cancer cell lines of different cancer types. Among them, compound 5a was the most
active as it showed the highest percentage inhibition values with more than 70% inhibition against SR
leukemia cell line, SK-MEL-5 and UACC-257 melanoma cell lines, and T-47D and MDA-MB-468 breast
cancer cell lines. The results of compound 5a and 5d against five cell lines (SK-MEL-5, MDA-MB-468,
786-0, COLO 205 and RXF 393) were compared with paclitaxel and gefitinib as reference standard
drugs, as illustrated in Figure 3. The results of paclitaxel and gefitinib were obtained from the NCI
data warehouse index.Molecules 2017, 22, x FOR PEER REVIEW 7 of 13 
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Figure 3. Comparison of percentage inhibition values expressed by 5a, 5d, paclitaxel and gefitinib
against the most sensitive cell lines.

2.2.2. Five Dose Testing

Compounds 5a and 5d with promising results in single-dose test and satisfying the criteria set by
the NCI for activity in that preliminary assay were further tested in a five dose testing mode at 10-fold
dilution (100–0.01 µM) on the full panel. For each of these compounds, three response parameters; the
IC50, the concentration producing 50% growth inhibition (GI), a measure of compound potency), TGI
(the concentration producing 100% GI, a measure of compound efficacy) and LC50 (the concentration
causing 50% lethality, a measure of compound efficacy and cytotoxicity) were determined. The two
tested compounds 5a and 5d showed high potency with one-digit micro molar IC50 values over most
of the cell lines.

Compounds 5a and 5d satisfied the pre-determined threshold growth inhibition criteria and were
further selected for NCI full panel five dose assay at 10-fold dilutions of five different concentrations
(0.01, 0.1, 1, 10 and 100 µM).

The result of tested compound 5a is given by three response parameters (GI50, TGI and LC50) for
each cell line from log concentration vs. percentage growth inhibition curves on cell lines derived from
nine cancers (Figure 4).

Compounds 5a and 5d showed remarkable broad-spectrum potency against multiple other cell
lines in the range of IC50 values of 1.25–8.44 and 1.26–3.75 µM, respectively. Among the 60 cancer cell
lines, 5a compound exhibited significant inhibition against colon KM12 (IC50: 1.25 µM), CNS SNB-75
(IC50: 1.26 µM), melanoma MDA-MB-435 (IC50: 1.41 µM), melanoma SK-MEL-28 (IC50: 1.49 µM) and
renal A498 (IC50:1.33 µM). The five cell lines against which compound 5d was found to be effective
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are non-small cell lung cancer EKVX (IC50: 1.72 µM), non-small cell lung cancer H522 (IC50: 1.73 µM),
colon COLO 205 (IC50: 1.65 µM), melanoma SK-MEL-5 (IC50: 1.63 µM) and renal A498 (IC50: 1.26
µM). By referring to the efficacy parameter (TGI values) of the target compounds 5a and 5d, it was
demonstrated that the most potent compound 5a was efficacious towards A498 renal, RXF 393 renal
cancer cells, SF-539 CNS cancer cell, an d NCI-H522 non- small cell lung cancer cell line with TGI
values of 3.32, 4.69, 4.67, and 5.12 µM, respectively, while compound 5d exerted remarkable efficacies
against NCI-H522, COLO 205, LOX IMVI, SK-MEL-5 and RXF 393 cell lines, being able to induce TGI
at concentrations below 3.66 µM and 50% lethality (LC50) at concentrations below 6.96 µM.Molecules 2017, 22, x FOR PEER REVIEW 8 of 13 
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3. Materials and Methods

3.1. General Information

The NMR spectra were recorded with a Bruker spectrometer (Billerica, MA, USA), operating at
400 MHz for 1H-NMR and 100 MHz for 13C-NMR. The multiplicities were abbreviated as s: singlet,
d: doublet, t: triplet, m: multiplet, q: quartet. The coupling constants J are recorded in Hertz (Hz) and
are liable to a little difference because they used the integral values measured by the spectrometer.
The relative shift values of peak are recorded by ppm unit using tetramethylsilane (TMS) as standard
material. Melting points were determined on a SRS OPTIMELT apparatus (Stanford Research Systems,
Sunnyvale, CA, USA). The FT-IR spectra were obtained on a 16E PC FT-IR spectrometer (Perkin
Elmer, Waltham, MA, USA). Thin layer chromatography (TLC) was performed using precoated plates
(0.25 mm, Merck, Billerica, MA, USA) of silica gel 60 F254 (230~400 mesh) for monitoring all reactions
and under ultraviolet irradiation (254 nm). Column chromatography separations are performed using
silica gel (230~400 mesh, Merck). All the commercially available reagent chemicals were obtained
from Sigma-Aldrich Corporation (St. Louis, MO, USA), Tokyo Chemical Industry Company Limited
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(Fukaya, Tokyo, Japan), Wako Pure Chemical Industries (Chuo-Ku, Osaka, Japan), Acros (Jersey
City, NJ, USA) and Dae-Jung Chemicals (Shiheung, Gyeonggi, Korea), and generally used without
further purification.

3.2. General Method for Synthesis of Compounds 2a–c

4-Bromo-2-fluoro-1-nitrobenzene (0.50 g, 2.28 mmol), piperidin-4-ylmethanol, 2-(piperazin-
1-yl)ethanol and 3,4,5-trimethoxyphenol (2.28 mmol), K2CO3 (0.32 g, 2.28 mol) were mixed in DMF
(10 mL) and heated at 90 ◦C under N2 for 5 h. After cooling, the reaction mixture was filtered to
remove solid and the solvent was evaporated. The residue was dissolved in dichloromethane and
washed with water, dried over anhydrous MgSO4 and concentrated in vacuo. The residue solid was
applied on column of silica gel and then eluted with the mixed solvent of ethyl acetate and hexanes
(3:1, v/v) to give the pure product as a white solid.

1-(5-Bromo-2-nitrophenyl)piperidin-4-yl)methanol (2a). Yield: 0.61 g (85%), 1H-NMR (CDCl3) δ 1.50–1.53
(m, 2H), 1.72 (s, 1H), 1.87 (d, J = 12.8 Hz, 2H), 2.89 (t, J = 12.4 Hz, 2H), 3.34 (d, J = 12.4 Hz, 2H), 3.60
(d, J = 6.4 Hz, 2H), 7.10 (d, J = 8.8 Hz, 1H), 7.27 (s, 1H), 7.69 (d, J = 8.8 Hz, 1H).

2-(4-(5-Bromo-2-nitrophenyl)piperazin-1-yl)ethan-1-ol (2b). Yield: 0.7 g (93%). 1H-NMR (CDCl3) δ 2.661
(t, J = 5.2 Hz, 2H), 2.714 (t, J = 4.8 Hz, 4H), 3.136 (t, J = 4.8 Hz, 4H), 3.688 (t, J = 5.2 Hz, 2H), 7.164
(d, J = 8.8 Hz, 1H), 7.274 (s, 1H), 7.70 (d, J = 8.8 Hz, 1H).

5-(5-Bromo-2-nitrophenoxy)-1,2,3-trimethoxybenzene (2c). Yield: 0.8 g (92%). 1H-NMR (CDCl3) δ 3.72
(s, 6H), 3.78 (s, 3H), 6.33 (s, 2H), 7.09 (d, J = 8.8 Hz, 1H), 7.31 (s, 1H), 7.68 (d, J = 8.8 Hz, 1H).

3.3. General Method for Synthesis of Compounds 3a–c

Compounds 2a–c, 3-pyridylboronic acid (120 mole %) Pd2(PPh3)2Cl2 (5 mole %) and K2CO3

(200 mole %) were mixed and dissolved in degassed mixed solvent of acetonitrile and water (4:1, v/v).
The mixture was bubbled with nitrogen for 15 min and then heated at 95 ◦C for 3 h. After being
cooled to room temperature, the mixture was diluted with water and extracted with ethyl acetate
(3 × 5 mL). The organic layers were combined, dried over anhydrous MgSO4, and concentrated
in vacuo. The residue was then subjected to flash chromatography using the appropriate ratios of
hexanes and ethyl acetate as mobile phases.

1-(2-Nitro-5-(pyridin-3-yl)phenyl)piperidin-4-yl)methanol (3a). Yield: 0.42 g (87%). 1H-NMR (CDCl3) δ

1.50–1.53 (m, 2H), 1.72 (s, 1H), 1.87 (d, J = 12.8 Hz, 2H), 2.95 (t, J = 12 Hz, 2H), 3.41 (d, J = 12.4 Hz, 2H),
3.61 (d, J = 6.4 Hz, 2H), 7.18 (dd, J = 1.6 and 8.4 Hz, 1H), 7.29 (s, 1H), 7.49 (dd, J = 4.8 and 8 Hz, 1H),
7.96 (s, 1H), 7.93 (s, 1H), 8.70 (d, J = 4.8 Hz, 1H), 8.87 (s, 1H).

3-(4-Nitro-3-(3,4,5-trimethoxyphenoxy)phenyl)pyridine (3b). Yield: 0.66 g (83%). 1H-NMR (CDCl3) δ 3.75
(s, 6H), 3.75 (s, 3H), 6.34 (s, 2H), 7.14 (d, J = 2.0 Hz, 1H), 7.32–7.35 (m, 2H), 7.75 (td, J = 8.0 and 2.0 Hz,
1H), 7.98 (d, J = 8.0 Hz, 1H), 8.55 (dd, J = 5.2 and 2.0 Hz, 1H), 8.68 (d, J = 2.0 Hz, 1H).

2-(4-(2-Nitro-5-(pyridin-3-yl)phenyl)piperazin-1-yl)ethan-1-ol (3c). Yield: 0.60 g (86%). 1H-NMR (CDCl3) δ

2.67 (t, J = 5.2 Hz, 2H), 2.748 (t, J = 4.8 Hz, 4H), 3.21 (t, J = 4.8 Hz, 4H), 3.69 (t, J = 5.2 Hz, 2H), 7.24 (dd,
J = 8.4 and 1.6 Hz, 1H), 7.29 (s, 1H), 7.45 (dd, J = 4.8 and 8 Hz, 1H), 7.90 (dt, J = 1.6 and 8 Hz, 1H), 7.94
(d, J = 8.4 Hz, 1H), 8.70 (dd, J = 1.6 and 4.8 Hz, 1H), 8.86 (d, J = 1.6 Hz, 1H).

3.4. General Method for the Palladium Catalyzed Reduction of Nitrobenzenes 3a–c to the Corresponding
Anilines 4a–c

To a solution of compound 3a–c (0.5 g, 22.6 mmol) in ethanol (150 mL), (0.05 g) of 10% Pd/C was
added. The reaction mixture was stirred at room temperature under an atmosphere of hydrogen for
9 h. After completion of the reaction, the resulting mixture was filtered through celite, and the filtered
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catalyst was washed with ethanol. The filtrate was concentrated under vacuum to afford compound
4a–c which was used in the next step without further purification.

(1-(2-Amino-5-(pyridin-3-yl)phenyl)piperidin-4-yl)methanol (4a). Yield: 0.39 g (88%). 1H-NMR (CDCl3) δ

1.50–1.54 (m, 2H), 1.69 (s, 1H), 1.92 (d, J = 12.4 Hz, 2H), 2.72 (t, J = 9.6 Hz, 2H), 3.26 (d, J = 11.2 Hz, 2H),
3.63 (t, J = 2.8 Hz, 2H), 6.85(d, J = 8 Hz, 1H), 7.29–7.31 (m, 3H), 7.85 (d, J = 8 Hz, 1H), 8.51 (d, J = 4.8 Hz,
1H), 8.82 (d, J = 2.8 Hz, 1H).

4-(Pyridin-3-yl)-2-(3,4,5-trimethoxyphenoxy)aniline (4b). Yield: 0.42 g (91%). 1H-NMR (CDCl3) δ 3.74
(s, 6H), 3.77 (s, 3H), 6.34 (s, 2H), 6.88(d, J = 8.0 Hz, 1H), 7.30–7.33 (m, 3H), 7.86 (d, J = 8 Hz, 1H), 8.49
(d, J = 4.8 Hz, 1H), 8.79 (d, J = 2.8 Hz, 1H).

2-(4-(2-Amino-5-(pyridin-3-yl)phenyl)piperazin-1-yl)ethanol (4c). Yield: 0.40 g (88%). 1H-NMR (CDCl3) δ

2.67 (t, J = 5.2 Hz, 2H), 2.748 (t, J = 4.8 Hz, 4H), 3.21 (t, J = 4.8 Hz, 4H), 3.69 (t, J = 5.2 Hz, 2H), 6.79 (d,
J = 8 Hz, 1H), 7.15 (dd, J = 8.0 and 1.6 Hz, 1H), 7.20 (s, 1H), 7.29 (dd, J = 4.8 and 1.6 Hz, 1H), 7.77 (dt,
J = 1.6 and 8.0 Hz, 1H), 8.46 (dd, J = 1.6 and 4.8 Hz, 1H), 8.76 (d, J = 1.6 Hz, 1H).

3.5. General Procedure for the Synthesis of Urea Derivatives 5a–n

To a solution of aryl isocyanate (0.2 mmol) in THF (1 mL), the appropriate aniline compounds
4a–c (0.2 mmol) were added. The mixture was stirred at room temperature until arylisocyanate was
completely reacted. The solvent was removed in vacuo, and the residue was then subjected to flash
chromatography using the appropriate ratios of hexanes and ethyl acetate as mobile phases to obtain
urea compounds (5a–n).

1-(2-(4-(Hydroxymethyl)piperidin-1-yl)-4-(pyridin-3-yl)phenyl)-3-(4-methylphenyl)urea (5a). Yield: 0.045 g
(64%). m.p.: 215–217 ◦C. IR (KBr) 3663, 3315, 3185, 1678, 1519, 838 cm−1. 1H-NMR (DMSO-d6) δ 1.53
(s, 2H), 1.80 (s, 2H), 2.27 (s, 3H), 2.74 (t, J = 10.0 Hz, 2H), 3.03 (s, 2H), 3.4 (s, 2H), 4.56 (t, J = 5.2 Hz,
1H), 7.11 (s, 1H), 7.13 (s, 1H), 7.39 (s, 1H), 7.41 (s, 1H), 7.45–7.48 (m, 2H), 7.49 (d, J = 2 Hz, 1H), 8.05
(td, J = 2.0 and 8.4 Hz, 1H), 8.11 (s, 1H), 8.18 (d, J = 8.4 Hz, 1H), 8.52 (dd, J = 1.2 and 4.4 Hz, 1H), 8.89
(d, J = 2.0 Hz, 1H), 9.54 (s, 1H).13C-NMR (DMSO-d6) δ 20.83, 29.46, 38.66, 52.62, 66.48, 119.07, 119.17,
119.88, 122.92, 124.20, 129.7, 130.98, 131.31, 134.03, 134.65, 136.00, 137.64, 143.39, 147.79, 148.26, 152.97.

1-(2-(4-(Hydroxymethyl)piperidin-1-yl)-4-(pyridin-3-yl)phenyl)-3-(4-(trifluoromethyl) phenyl)thiourea (5b).
Yield: 0.07 g (86%). m.p.: 98–100 ◦C. IR (KBr) 3580, 3210, 3041, 2926, 1590, 1520, 838 cm−1. 1H-NMR
(CD3OD) δ 1.23–1.25 (m, 2H), 1.59 (s, 1H), 1.81 (d, J = 10.8, 2H), 2.76 (t, J = 10 Hz, 2H), 3.13 (d, J = 12.0
Hz, 2H), 3.37 (d, J = 6.4 Hz, 2H), 7.39 (dd, J = 2.0 and 8.4 Hz, 1H), 7.44 (d, J = 2.0 Hz, 1H), 7.52 (dd,
J = 5.2 and 8.0 Hz, 1H), 7.70 (d, J = 8.4 Hz, 2H), 7.76 (d, J = 8.4 Hz, 2H), 8.09 (dt, J = 1.6 and 8.0 Hz, 1H),
8.33 (d, J = 8.4 Hz, 1H), 8.51 (dd, J = 1.2 and 4.8 Hz, 1H), 8.80 (d, J = 2 Hz, 1H). 13C-NMR (CD3OD)
δ 29.18, 38.04, 51.94, 66.44, 118.47, 121.85, 123.75, 124.10, 124.24, 125.82, 126.74, 133.22, 134.31, 135.04,
136.80, 142.29, 146.04, 146.67, 147.09, 178.85.

1-(2-(4-(Hydroxymethyl)piperidin-1-yl)-4-(pyridin-3-yl)phenyl)-3-(4-methoxyphenyl)urea (5c). Yield: 0.061 g
(84%). m.p.: 205–207 ◦C. IR (KBr) 3585, 3314, 3196, 2927, 1673, 1506, 835 cm−1. 1H-NMR (DMSO-d6)
δ 1.51–1.54 (m, 3H), 1.80 (d, J = 9.6 Hz, 2H), 2.74 (t, J = 10.0 Hz, 2H), 3.02 (d, J = 11.2 Hz, 2H), 3.37
(s, 2H), 3.74 (s, 3H), 4.55 (t, J = 5.2 Hz, 1H), 6.90 (s, 1H), 6.92 (s, 1H), 7.41–7.42 (m, 1H), 7.43–7.46 (m,
1H), 7.46–7.48 (m, 2H), 7.49 (d, J = 2.0 Hz, 1H), 8.04 (t, J = 2.4 Hz, 1H), 8.06 (s, 1H), 8.19 (d, J = 8.8 Hz,
1H), 8.52 (dd, J = 1.2 and 4.8 Hz, 1H), 8.89 (d, J = 2.0 Hz, 1H), 9.41 (s, 1H). 13C-NMR (DMSO-d6) δ 29.50,
38.64, 52.67, 55.64, 66.48, 114.56, 119.10, 119.68, 121.10, 122.98, 124.20, 130.85, 133.11, 134.01, 134.78,
136.00, 143.25, 147.78, 148.24, 153.12, 155.18.

1-(2-(4-(Hydroxymethyl)piperidin-1-yl)-4-(pyridin-3-yl)phenyl)-3-(3-chloro-4-trifluoromethyl-phenyl)urea (5d).
Yield: 0.072 g (85%). m.p.: 170–173 ◦C. IR (KBr) 3657, 3298, 3120, 2935, 1679, 1548, 804 cm−1. 1H-NMR
(DMSO-d6) δ 1.55 (s, 2H), 1.81 (s, 2H), 2.74 (s, 2H), 3.03 (s, 2H), 3.4 (s, 2H), 4.56 (t, J = 5.2 Hz, 1H),
7.44 (d, J = 2.0, 1H), 7.46 (s, 1H), 7.53 (d, J = 1.6 Hz, 1H), 7.64 (s, 1H), 7.72 (s, 1H), 8.06 (s, 1H), 8.12 (d,
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J = 2.0 Hz, 1H), 8.17 (d, J = 8.4 Hz, 1H), 8.21 (s, 1H), 8.54 (dd, J = 1.2 and 4.4 Hz, 1H), 8.89 (d, J = 2.0
Hz, 1H). 13C-NMR (DMSO-d6) δ 29.51, 38.64, 52.67, 66.45, 117.13, 119.23, 120.06, 123.01, 123.33, 124.20,
131.65, 132.56, 133.98, 134.11, 135.89, 139.90, 143.64, 147.84, 148.38, 152.67.

1-(2-(4-(Hydroxymethyl)piperidin-1-yl)-4-(pyridin-3-yl)phenyl)-3-(2,4-dichlorophenyl)urea (5e). Yield: 0.062
g (78%). m.p.: 189–191 ◦C. IR (KBr) 3582, 3305, 3097, 2924, 1677, 1587, 874 cm−1. 1H-NMR (DMSO-d6)
δ 1.55 (s, 3H), 1.81 (s, 2H), 2.74 (s, 2H), 3.04 (s, 2H), 3.4 (s, 2H), 4.56 (t, J = 5.2 Hz, 1H), 7.37 (dd, J = 2.0
and 8.8 Hz, 1H), 7.44–7.46 (m, 2H), 7.54–7.56 (m, 2H), 7.95 (d, J = 2.4 Hz, 1H), 8.05 (d, 1H), 8.18–8.19 (m,
2H), 8.53 (d, J = 4 Hz, 1H), 8.89 (s, 1H), 9.96 (s, 1H). 13C-NMR (DMSO-d6) δ 29.49, 38.64, 52.65, 66.46,
118.74, 119.17, 119.79, 120.10, 122.97, 123.62, 124.19, 131.08, 131.58, 134.03, 134.09, 135.91, 140.51, 143.64,
147.83, 148.35, 152.61.

1-(2,4-Difluorophenyl)-3-(4-(pyridin-3-yl)-2-(3,4,5-trimethoxyphenoxy)phenyl)urea (5f). Yield: 0.201 g (70%).
m.p.: 165–167 ◦C. IR (KBr) 3291, 3039, 2937, 1710, 1597, 844 cm−1. 1H-NMR (DMSO-d6) δ 3.67 (s, 3H),
3.752 (s, 6H), 6.50 (s, 2H), 7.076 (t, J = 8.4 Hz, 1H), 7.19 (d, J = 2.0 Hz, 1H), 7.32 (dt, J = 2.8 and 11.6 Hz,
1H), 7.43 (dd, J = 8.0 and 4.8 Hz, 1H), 7.43 (dd, J = 2.4 and 8.8 Hz, 1H), 7.96 (td, J = 8.8 and 1.6 Hz, 1H),
8.19–8.21 (m, 1H), 8.40 (d, J = 8.8 Hz, 1H), 8.51 (dd, J = 4.8 and 1.6 Hz, 1H), 8.79 (d, J = 2.4 Hz, 1H).
13C-NMR (DMSO-d6) δ 56.55, 60.62, 97.48, 103.98, 104.24, 104.49, 111.39, 111.58, 115.93, 120.70, 122.51,
124.28, 129.25, 131.02, 131.63, 131.98, 134.12, 134.57, 135.23, 146.61, 147.72, 148.61, 152.67, 154.16.

1-(4-Methoxyphenyl)-3-(4-(pyridin-3-yl)-2-(3,4,5-trimethoxyphenoxy)phenyl)urea (5g). Yield: 0.11 g (77.5%).
m.p.: 180–183 ◦C. IR (KBr) 3330, 3059, 2938, 1705, 1597, 830 cm−1. 1H-NMR (DMSO-d6) δ 3.67 (s, 3H),
3.73 (s, 3H), 3.75 (s, 6H), 6.49 (s, 2H), 6.89 (s, 1H), 6.91 (s, 1H), 7.21 (d, J = 2.4 Hz, 1H), 7.38 (s, 1H), 7.40
(s, 1H), 7.43–7.45 (m, 1H), 7.49 (dd, J = 8.8 and 2 Hz, 1H), 7.95 (dd, J = 8.0 and 2.0 Hz, 1H), 8.42 (d,
J = 8.0 Hz, 1H), 8.51 (s, 2H), 8.80 (d, J = 2.4 Hz, 1H), 9.21 (s, 1H). 13C-NMR (DMSO-d6) δ 55.62, 56.52,
60.63, 97.26, 114.56, 115.98, 120.25, 120.37, 122.61, 124.28, 131.05, 131.63, 133.04, 134.07, 134.44, 135.29,
146.17, 147.69, 148.53, 152.75, 152.89, 154.15, 155.02.

1-(2-Fluorophenyl)-3-(4-(pyridin-3-yl)-2-(3,4,5-trimethoxyphenoxy)phenyl)urea (5h). Yield: 0.103 g (74%).
m.p.: 103–106 ◦C. IR (KBr) 3424, 3030, 2938, 1707, 1533, 822 cm−1. 1H-NMR (DMSO-d6) δ 3.67 (s, 3H),
3.76 (s, 6H), 6.50 (s, 2H), 7.04–7.08 (m, 1H), 7.25–7.28 (m, 3H), 7.43 (dd, J = 4.8 and 8.0 Hz, 1H), 7.51
(dd, J = 8.4 and 2.0 Hz, 1H), 7.96 (td, J = 8.0 and 2.0 Hz, 1H), 8.22 (dt, J = 1.6 and 8.4 Hz, 1H), 8.40
(d, J = 8.8 Hz, 1H), 8.52 (dd, J = 4.8 and 1.6 Hz, 1H), 8.80 (d, J = 2.4 Hz, 1H), 9.12 (s, 1H), 9.31 (d,
J = 1.6 Hz, 1H).

1-(2,4-Dichlorophenyl)-3-(4-(pyridin-3-yl)-2-(3,4,5-trimethoxyphenoxy)phenyl)urea (5i). Yield: 0.12 g (78%).
m.p.: 186–188 ◦C. IR (KBr) 3333, 3096, 2938, 1712, 1591, 806 cm−1. 1H-NMR (DMSO-d6) δ 3.67 (s, 3H),
3.75 (s, 6H), 6.50 (s, 2H), 7.20 (d, J = 2.0 Hz, 1H), 7.30 (dd, J = 2.8 and 8.8 Hz, 1H), 7.42 (dd, J = 4.8
and 8 Hz, 1H), 7.50 (dd, J = 8.8 and 2.8 Hz, 1H), 7.43 (d, J = 8.8 Hz, 1H), 7.93 (d, J = 2.8 Hz, 1H), 7.95
(d, J = 4.4 Hz, 1H), 8.37 (d, J = 8.4 Hz, 1H), 8.52 (dd, J = 4.4 and 1.6 Hz, 1H), 8.68 (s, 1H), 8.80 (d,
J = 2.4 Hz, 1H).

1-(4-Chloro-3-(trifluoromethyl)phenyl)-3-(4-(pyridin-3-yl)-2-(3,4,5-trimethoxyphenoxy)phenyl)urea (5j). Yield:
0.144 g (88%). m.p.: 110–112 ◦C. IR (KBr) 3333, 3070, 2940, 1711, 1595, 822 cm−1. 1H-NMR (DMSO-d6)
δ 3.67 (s, 3H), 3.76 (s, 6H), 6.51 (s, 2H), 7.21 (d, J = 2.4 Hz, 1H), 7.42 (dd, J = 4.4 and 8.0 Hz, 1H), 7.51
(dd, J = 2.4 and 8.4 Hz, 1H), 7.62 (s, 1H), 7.95 (dt, J = 2.4 and 6 Hz, 1H), 8.11 (s, 1H), 8.38 (d, J = 8.8, 1H),
8.51 (d, J = 4.4 Hz, 1H), 8.69 (s, 1H), 8.79 (d, J = 2.4 Hz, 1H), 9.82 (s, 1H). 13C-NMR (DMSO-d6) δ 56.54,
60.60, 97.42, 115.96, 116.93, 116.99, 120.78, 122.58, 122.93, 123.17, 124.25, 130.79, 131.92, 132.55, 134.12,
134.61, 135.19, 139.60, 146.62, 147.73, 148.63, 152.60, 154.18.

1-(2-Fluorophenyl)-3-(2-(4-(2-hydroxyethyl)piperazin-1-yl)-4-(pyridin-3-yl)phenyl)urea (5k). Yield: 0.105 g
(72%). m.p.: 95–97 ◦C. IR (KBr) 3303, 3042, 2923, 1728, 1525, 804 cm−1. 1H-NMR (DMSO-d6) δ 2.73–2.75
(m, 6H), 2.95 (s, 4H), 4.26 (t, J = 5.6 Hz, 2H), 7.15–7.17 (m, 4H), 7.43–7.45 (m, 2H), 8.10–8.13 (m, 2H),
8.52 (s, 1H), 8.54 (d, J = 4.8 Hz, 1H), 8.90 (s, 1H), 8.91 (s, 1H), 9.36 (s, 1H).
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1-(4-Methylphenyl)-3-(2-(4-(2-hydroxyethyl)piperazin-1-yl)-4-(pyridin-3- yl)phenyl)urea (5l). Yield: 0.102 g
(70%). m.p.: 166–168 ◦C. IR (KBr) 3306, 3473, 3031, 2923, 1707, 1517, 813 cm−1. 1H-NMR (CD3OD) δ

2.33 (s, 3H), 2.79–2.82 (m, 6H), 2.97 (t, J = 4.4 Hz, 4H), 4.34 (t, J = 5.6 Hz, 2H), 7.09 (d, J = 8.4 Hz, 2H),
7.16 (d, J = 8.4 Hz, 2H), 7.32–7.36 (m, 3H), 7.41 (d, J = 2.0 Hz, 1H), 7.49 (s, 1H), 8.06 (dt, J = 2.0 and
8.4 Hz, 1H), 8.23 (d, J = 8.4 Hz, 1H), 8.48 (d, J = 4.4 Hz, 1H), 8.79 (s, 1H).

1-(2,4-Dichlorophenyl)-3-(2-(4-(2-hydroxyethyl)piperazin-1-yl)-4-(pyridin-3-yl)phenyl)urea (5m). Yield: 0.14 g
(88%). m.p.: 203–205 ◦C. IR (KBr) 3310, 3582, 2921, 1729, 1522, 806 cm−1. 1H-NMR (CD3OD) δ 2.86–2.91
(m, 6H), 3.01 (t, J = 4.4 Hz, 4H), 4.38 (t, J = 5.6 Hz, 2H), 7.32 (d, J = 2.4 Hz, 1H), 7.34 (d, J = 2.4 Hz, 1H),
7.42–7.46 (m, 3H), 7.51–7.54 (m, 1H), 7.76 (d, J = 2.4 Hz, 1H), 7.84 (d, J = 2.4 Hz, 1H), 8.06 (td, J = 1.6
and 8.0 Hz, 1H), 8.22 (d, J = 8.8 Hz, 1H), 8.49 (t, J = 3.2 Hz, 1H), 8.78 (s, 1H).

1-(4-Chloro-3-(trifluoromethyl)phenyl)-3-(2-(4-(2-hydroxyethyl)piperazin-1-yl)-4-(pyridin-3-yl)phenyl)urea
(5n). Yield: 0.155 g (91%). m.p.: 120–122 ◦C. IR (KBr) 3305, 3441, 3052, 2931, 1728, 1524, 830 cm−1.
1H-NMR (DMSO-d6) δ 2.75 (t, J = 5.6 Hz, 2H), 2.81 (s, 4H), 2.93 (s, 4H), 4.38 (t, J = 5.6 Hz, 2H), 7.46–7.48
(m, 1H), 7.48–7.49 (m, 1H), 7.51 (d, J = 2.4 Hz, 1H), 7.62 (s, 1H), 7.64 (s, 1H), 7.74 (d, J = 2.4 Hz, 1H), 7.76
(d, J = 2.4 Hz, 1H), 8.06 (s, 1H), 8.15 (d, J = 2.4 Hz, 1H), 8.29 (s, 1H), 8.53 (dd, J = 1.6 and 4.8 Hz, 1H),
8.90 (dd, J = 2.4 and 0.4 Hz, 1H).

4. Conclusions

A new series of 1-phenyl-3-(4-(pyridin-3-yl)phenyl)urea derivatives have been synthesized and
biologically evaluated as antiproliferative agents against nine different cancer cell lines. The present
investigation highlights the significance of adding hydrogen bond moiety on the titled scaffold.
Compounds 5a–e with a hydroxymethyl piperidine moiety exhibited superior antiproliferative activity
than paclitaxel and gefitinib against the most sensitive cell lines. Among the five compounds,
compounds, 5a and 5d showed promising mean growth inhibitions with significant efficacies and
superior potencies than paclitaxel and gefitinib in different cancer cell lines, particularly ones belonging
to melanoma cell lines. Moreover, compound 5a elicited lethal rather than inhibitory effects on the
SK-MEL-5 melanoma, 786-0, A498, RXF 393 renal cancer, and MDA-MB-468 breast cancer cell lines.
The findings of present study point towards the potential of 1-phenyl-3-(4-(pyridin-3-yl)phenyl)urea
derivatives as promising leads for future development of broad spectrum anticancer agents.
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