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Abstract
The General Movements Analysis (GMA) has demonstrated noteworthy  promise in the 
early detection of infantile Cerebral Palsy (CP). However, it is subjective and requires 
highly trained clinicians, making it costly and time-consuming. Automation of GMA 
could potentially enhance accessibility and further our comprehension of infants’ full-
body movements. This paper investigates the feasibility of using 2D and 3D pose estima-
tion strategies to observe and scrutinize the infant’s comprehensive body movement attrib-
utes to improve our perspective to consider joint movement and positions over time as an 
alternative to GMA for early CP prediction. The study includes comprehensive movement 
analysis from video recordings for accurate and efficient analysis of infant movement by 
computing various metrics such as angle orientations at different predicted joint locations, 
postural information, postural variability, movement velocity, movement variability, and 
left–right movement coordination. Along with antigravity movements are assessed and 
tracked as indicators of CP. We employed a variety Machine Learning (ML) algorithms for 
CP classification based on a series of robust features that have been developed to enhance 
the interpretability of the model. The proposed approach is assessed through experimenta-
tion using the MINI-RGBD and RVI-38 datasets with a classification accuracy of 92% and 
97.37% respectively. These results substantiate the efficacy of employing pose estimation 
techniques for the precocious prediction of infantile CP, highlighting the importance of 
monitoring changes in joint angles over time for accurate diagnosis and treatment planning.
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1  Introduction

Cerebral Palsy (CP) denotes a spectrum of enduring neurologic anomalies [1, 2]. These anom-
alies are conventionally attributed to harm inflicted on the neonatal brain either antecedent to, 
concurrent with, or in the immediate aftermath of birth due to factors such as infection, cere-
brovascular accident, cranial trauma, or cerebral hypoxia [3, 4]. The disorder predominantly 
compromises an individual’s motor function, postural control, and coordination [5]. It may also 
precipitate an array of ancillary complications encompassing challenges with swallowing, deglu-
tition, delayed crawling, speech, vision, and cognitive impairments [6]. The intensity of these 
manifestations can exhibit substantial variation, with some individuals encountering only trivial 
symptoms while others may be profoundly incapacitated [7]. CP affects approximately 2.11 out 
of every 1000 live births [4, 8]. The risk of developing CP is higher for infants born prematurely 
[9] i.e., a delivery that occurs prior to the completion of thirty-seven weeks of gestation [10].

General movement assessment (GMA) has been widely investigated to detect motor dys-
function, especially CP [11–14]. Prechtl [15] discovered that the state of an infant’s nervous 
system can be accurately determined by observing the quality of their spontaneous movements 
[2, 5], particularly their general movements (GMs), at the corrected age of 3–5 months [16]. 
GMs are spontaneous body movements that constitute a unique pattern of movements, termed 
Fidgety Movements (FMs) [6, 7]. These movements can be discerned from early intrauter-
ine life until approximately 20 weeks post-term [17]. They provide valuable insights into the 
evolution and operation of the infant’s nervous system [18]. As presented by [16], 95% of CP 
infants did not have FM. Physiotherapists or doctors observe the spontaneous movements of 
an infant along with their family medical history to diagnose movement disorders [17]. How-
ever, the subjective nature of these clinical tests, which rely on gestalt visual perception of 
movement, may affect their accuracy and reliability [9] and lacking in discernible quantitative 
diagnostic features [3, 11]. Additionally, they rely heavily on the infant being in an appropriate 
behavioral condition [13], rendering them a time-intensive process [19] and potentially leading 
to observer fatigue [6]. Therefore, there is a need for an automatic system to objectively ana-
lyze the movements and standardize criteria for assessing infant movement. Several research-
ers have favored marker-based techniques [20, 21] which, while precise, necessitate a specific 
arrangement that may not be feasible [9]. In the last decade, computer vision techniques have 
revolutionized the medical sector and achieved highly encouraging outcomes in the early 
identification of various diseases. Due to the progress made in deep learning, there are now 
many dependable neural models that can be used for automatic estimations of human poses 
in both 2D and 3D from 2D images [9, 19, 22]. Furthermore, the development of markerless 
motion capture (MoCap) has been facilitated by the widespread utilization of traditional video 
recordings for documenting infant movements. This technology allows for the non-invasive 
collection of movement data and offers a more affordable option compared to sensor-based 
MoCap. Its application is feasible in both clinical environments and home settings [7]. This 
research aims to utilize video recordings to recognize the movement patterns of infants lying 
on their backs by obtaining the 2D and 3D coordinates using different pose estimation algo-
rithms. Then, analyzes the infant’s whole-body characteristics for early prediction of CP. The 
subsequent sections of this study are organized as follows: Sect. 2 explores the related works. 
The proposed methodology is introduced in Sect. 3. In this section, we explain 2D and 3D 
pose estimation, preprocessing, movement feature extraction, and the underlying benchmark 
datasets. Section 4 discusses the experimental evaluation for predicting infant CP, along with 
the analysis and interpretation of the results. Finally, Sect. 5 delivers concluding remarks and 
proposes potential avenues for further studies.
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2 � Related work

Over the past two decades, there has been considerable advancement in the development 
of sensor-based metrics for infant motion. These metrics quantify the characteristics of 
movement, providing a more objective and accurate assessment of infant movement 
[12]. Such techniques include movement tracking using markers or wearable motion 
sensors [20, 21] situated on the toddler’s body parts. Nonetheless, having a multitude of 
sensors or markers can be a challenge that requires calibration and re-positioning [13] 
and can be uncomfortable for infants which may hinder the infant’s spontaneous move-
ments and affect the accuracy of the tests [3, 10, 23]. Other techniques, such as those 
using the Microsoft Kinect [5], have been developed to investigate movement character-
istics of the infant body. These methods suffer from many limitations such as the subject 
being standing and being larger than one meter for body tracking, which renders them 
inappropriate for infants [11, 13].

To attenuate this problem, significant work has been put into creating non-invasive mon-
itoring solutions, such as using video information from RGB or RGB-D cameras. Wang 
et al. [22] propose a novel multi-task Convolutional Neural Networks (CNN) framework 
for simultaneously estimating multiple infant body joints based on RGB-depth images and 
evaluate their method on two publicly available infant pose estimation datasets namely 
Infant Body Pose Dataset (IBPD) and Infant Multiple View Dataset (IMV). Groos et  al. 
[7] focus on the creation and verification of a deep learning technique to forecast CP from 
spontaneous movements in high-risk infants aged between 9 to 18 weeks corrected age. 
Khan et al. [3] propos a deformable part-based model (DPM) to identify movement abnor-
malities in infants between 2 to 6 months old, using video data and a process called skel-
etonization. They evaluate their approach on a dataset of infants with various movement 
disorders, including CP, spina bifida, and microcephaly.

As deep learning techniques continue to advance, numerous studies have been 
developed that can precisely determine human poses and postures from 2D images [9, 
14, 19, 22]. These frameworks use advanced ML algorithms to analyze images and 
extract information about the position and movement of the human body. By analyz-
ing posture and orientation of infants, trained pediatricians can use this information 
to early predict and diagnose CP. McCay et  al. [8] establish histogram-oriented pose 
characteristics, such as Histogram of Joint Orientation 2D (HOJO2D) and Histogram 
of Joint Displacement 2D (HOJD2D) for early detection of infant CP. The authors also 
propose the challenging RVI-38 dataset which compromises a collection of videos 
recorded during regular clinical procedures. In the context of this research, we have 
employed the RVI-38 dataset which was obtained upon request from the correspond-
ing authors. Ningrum et al. [18] describe the development of a classifier that utilizes 
OpenPose and Deep Neural Networks (DNN), including a Long Short Term Memory 
(LSTM), ID CNN integrated with an LSTM, and Gated Recurrent Unit (GRU). The 
classifier is designed to estimate the probability of infant CP, given the unavailability 
of data and imbalances in categories. ID CNN – LSTM records the best accuracy of 
96%. In another work, [4] combine different deep learning techniques with 2D pose 
estimation methods to categorize infant movements. This is used for independent 
tracking of neurological development when the infant interacts with a toy. The study 
demonstrates that the Bi-LSTM-CNN model outperforms others in positional experi-
ments, achieving an F1 score of 84.5%. Chambers et al. [12] create a standard reference 
dataset for infantile motion by analyzing 85 online video clips. The motions of various 
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body parts were then quantified using the OpenPose estimator algorithm. Ni et al. [2] 
present SiamParseNet, a semi-supervised system designed for parsing infant bodies, 
and demonstrate its effectiveness in estimating infant poses and superior performance 
in predicting GMA and risky CP. Groos et al. [19] train four different types of CNN 
and evaluate on a novel dataset of infant poses sourced from a clinical international 
community to precisely localize segments and joints in the movements of infants aged 
2 to 5 months post-term.

To accurately assess infant movements and perform a comprehensive analysis of their 
movements in space, it is essential to perform 3D pose estimation of infants.  Soualmi 
et  al. [9] present 3D infants pose estimation method which uses stereoscopic images, 
specifically tailored for premature babies in the Neonatal Unit. The researchers used a 
substantial dataset of over 88k images, which were gathered from 175 videos featuring 
53 premature infants. In their work, Hesse and colleagues [11] devise a technique for 
predicting the 3D locations of infant joints and develop a classifier that identifies body 
parts by utilizing random ferns and achieve an average distance error of 41 mm. The 
authors incorporate a feature selection process and a scheme for reweighting the kine-
matic chain and also ensure rotation invariance by applying Principal Component Analy-
sis (PCA) to the input image. In 2018 [24], Hesse et al. developed the MINI-RGBD data-
set, which comprises 12 sequences that capture authentic infant movements. It showcases 
a diverse range of textures, shapes, and backgrounds, providing a realistic representation 
of infant movements. Li et al. [13] introduce a 3D pose estimation method that is cost-
effective in terms of training and is appropriate for infants in reclining positions. This 
method employs an established 2D human body keypoints detection technique, which 
is integrated with RGB-D data gathered from a Kinect sensor. The effectiveness of this 
approach is assessed employing the MINI-RGBD sequences with an average error of 
13.76 mm in the estimated length of body parts.

In this context, we extract new GMA-relevant features using a variety of 2D and 3D 
pose-estimation algorithms and calculate the movements of the body parts generated from 
standard 2D RGB video for early prediction of CP. The proposed approach calculates the 
angular orientation at the identified body part locations and encodes this data in a manner 
that can precisely depict their movement. During the processing stage, a graph is created 
that represents the detected joints and their respective angles, which change based on the 
viewing angle. By integrating the input with this graph, we can extract important informa-
tion about the posture and alignment of an infant.

The significant contributions made by this study are outlined as follows:

•	 Employing 2D and 3D pose estimation techniques for tracking and analyzing the 
infant’s whole-body movement characteristics to revolutionize our comprehension of 
joint movements and positions over time which serves as an alternative to GMA for 
early prediction of CP.

•	 Performing comprehensive movement analysis in videos for accurate and efficient anal-
ysis of infant movement by computing various metrics such as angle orientations at dif-
ferent predicted joint locations, postural information, variability, velocity, acceleration, 
left–right movement coordination, antigravity movements, and postural patterns.

•	 A series of robust features have been developed to enhance the interpretability of the 
model used for CP prediction. It does this by visually emphasizing the contribution of 
each body segment in the video. This allows for a clearer understanding of how the 
model makes its predictions and finally the outcomes are validated across two different 
datasets.
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3 � Methodology

In this section, we delve into the primary procedures of the proposed methodology. Pri-
marily, pose estimation using different techniques is explained. The joint angles compu-
tation and tracking were clearly explained. Pre-processing, movement characteristics, and 
classification techniques were elaborated. Deceptively, the seemingly simple movements 
of humans, such as moving an arm or lifting a leg, require complex coordination between 
the brain and the musculoskeletal system. Any disruption in this system can lead to invol-
untary movements, challenges in executing desired movements, or a combination of both. 
To study this, we extract a set of features to capture a holistic view of infant movement and 
posture which include:

•	 Postural information: This includes the position and angle of various body parts, pro-
viding a snapshot of the body’s overall posture at any given moment.

•	 Postural variability: This measures the variability of both position and angle, capturing 
the range and diversity of movements.

•	 Movement velocity: The absolute velocity of movement provides insight into the speed 
and fluidity of the subject’s actions.

•	 Anti-gravity movements: These are movements of the legs and arms that work against 
gravity, providing important information about strength and coordination.

•	 Left–Right symmetry of movement: By cross-correlating the positions and angles of 
movements on the left and right sides of the infant body, we can assess the symmetry of 
movement, which is a key aspect of coordinated motor function.

This method begins by pinpointing various body parts according to the location of 
their joints. Following this, it computes the angles at predicted joints, such as the elbow 
and knee. By monitoring these angles over time, the method can effectively characterize 
the motion and detect any potential anomalies. Our predictions of infants with CP were 
based on kinematic variables. The time-series data extracted from body-landmark positions 
served as the source for computing these kinematic features. Subsequently, the method 
encodes the movements at various joints by monitoring the angle orientations over time 
and determining the degree of deviation of each infant from the standard. The classifica-
tion performance of the proposed framework was assessed employing both the RVI-38 [8] 
and the publicly available MINI-RGBD [24] datasets. This adjusted data is then utilized 
to create features grounded in GMA for further examination. The extracted features are 
subsequently inputted into a classification framework for evaluation. This comprehensive 
approach allows for a detailed and nuanced understanding of infant motor function. A 
block diagram that illustrates the primary stages involved in this study is demonstrated in 
Fig. 1. The detailed specifics of each step are elaborated in the following subsections.

3.1 � Pose estimation

Estimating the pose of infants in a supine position is a vital step in the creation of an automated 
system for GMA [13]. Utilizing markerless vision-based data is a more appealing approach 
for examining infant movement compared to the use of wearable sensors. Features reflecting 
posture, kinematic variables, acceleration, and symmetry (left–right cross-correlation) are 
extracted from videos using pose estimation. While infant movement data is recorded as RGB 
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video, direct video analysis can be difficult due to intra-class variations including changes in 
lighting, background, and the infant’s appearance, among other factors. Consequently, each 
frame is treated as an individual image that undergoes processing for the estimation of pos-
ture and detection of joint angles by exploring three different techniques namely MediaPipe,1 
OpenPose [25], and MeTRAbs [26]. These approaches continue to be highly ranked in numer-
ous human pose estimation competitions. They employ parallel networks with varying resolu-
tions, as opposed to the conventional high-to-low networks in series.

MediaPipe  Google’s MediaPipe is a powerful tool that can accurately track various move-
ments, including the dexterous and positional movements of infants. MediaPipe Pose, 
based on the BlazePose CNN, surpasses current leading approaches and delivers real-time 
performance on the majority of modern devices. It is a bottom-up multi-person pose esti-
mation that employs a two-step detection-tracking ML approach. Initially, it identifies the 
region of interest (ROI) within the frame. Following this, it forecasts the poses and the seg-
mentation mask within the identified ROI [29] as illustrated in Fig. 2.

Fig. 1   Schematic of the proposed methodology

Fig. 2   The estimated poses using MediaPipe

1  https://​pypi.​org/​proje​ct/​media​pipe/

https://pypi.org/project/mediapipe/
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OpenPose [25]  Is a leading method for identifying human body parts and their appearance 
in images. It operates on the principle of Part Affinity Fields (PAFs) and is known as a ‘bot-
tom-up’ approach. This means it first identifies lower-level features, which are then used to 
reconstruct the higher-level skeletal posture. The OpenPose framework is utilized to extract 
the positions of joints from 2D RGB video data which results in a skeletal pose representation 
that comprises 25 predefined joints, along with a confidence score associated with the predic-
tion. This approach provides a comprehensive and reliable method for human pose estima-
tion. Figure 3 displays an example of the key joints that have been extracted using OpenPose.

MeTRAbs  To accurately assess infant movements and conduct a thorough spatial analysis, 
it is crucial to perform 3D pose estimation for infants [9]. MeTRAbs [26] is a technique 
that estimates 3D human postures using volumetric heatmaps that are metric-scale trun-
cation-robust (MeTRo). These heatmaps are defined in metric 3D space, not in alignment 
with the image space. This method overcomes the constraints of 2.5D volumetric heat-
maps, which are unable to pinpoint body joints beyond the image borders and necessitate 
an additional post-processing phase to eliminate scale uncertainty. MeTRAbs can detect 
joints defined by the SMPL (Skinned Multi-Person Linear model), H36M (Human3.6M), 
or COCO (Common Objects in Context) skeleton conventions. The SMPL skeleton con-
vention defines 24 joints, while the H36M skeleton convention defines 32 joints, both 
including the head, neck, torso, hips, shoulders, elbows, wrists, knees, and ankles. The 
COCO skeleton convention defines 17 keypoints for the human body. Figure 4 shows the 
results obtained after exploring MeTRAbs as a 2D and 3D pose estimator.

Fig. 3   Output skeleton extracted by OpenPose [25]
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3.2 � Data preprocessing and correction

Pose estimation data can often contain missing values, false positive detections, break-
points in the time series, and irregular serrations. To obtain clean signals, it is necessary to 
preprocess the time series data extracted by different pose estimators. One approach is to 
initially apply linear interpolation [27] to the raw time series to remove missing data. Sub-
sequently, outliers can be discarded using a rolling-median filter with a 1-s smoothing win-
dow [28]. In the final act of refining the data, a rolling-mean filter was investigated across 
the data points with a 1-s smoothing window, smoothing out the rough edges and bringing 
harmony to the signals. Post interpolation and filtering, the high-frequency noise dimin-
ishes, resulting in smoother data. The disparities in the keypoint coordinate pre and post-
the automatic interpolation and smoothing correction procedures are illustrated in Fig. 5.

Finally, the confidence threshold ti is derived from the predicted confidence scores by 
computing the average of these scores and subtracting 5% per joint as inspired by [8]. All 
joints that did not surpass the confidence threshold were ignored. As such, ti value for joint 
i can be mathematically given by:

where n represents the total count of frames, ci,j is the confidence score of joint  i at frame 
j predicted by the estimator. The preprocessed signals are then used for determining kin-
ematic variables, joint angles calculation, and motion tracking.

3.3 � Movement analysis and angles calculation

To provide a clear and concise explanation of the infant movement, the measurements of 
crucial angles were performed. Some of the more informative angles can be computed 
using the coordinates of the landmarks detected by different pose estimation techniques. 
These angles can provide valuable information about the movement and posture of differ-
ent body parts of infants. By analyzing these angles over time, it may be possible to iden-
tify patterns or abnormalities in movement that could be indicative of underlying health 
conditions or injuries. A basic collection of characteristics, derived from the movements of 
the arms, hips, and legs, have been calculated using the positions of the shoulder, elbow, 
hip, knee, and ankle.

(1)ti = (
1

n

∑n

j=1
ci,j) ∗ 95%

Fig. 4   Example of 2D and 3D keypoints extraction using MeTRAbs [26]
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3.3.1 � Angles calculation

Each angle’s computation is based on three previously identified keypoints. The central 
keypoint is employed to estimate the angle under observation, while the other two key-
points, which are the nearest to the observed angle, aid in this calculation.

Shoulder angle  The angle formed by the upper arm and the torso, with the shoulder joint 
acting as the pivot point is commonly known as the shoulder angle, also named the torso-
upper arm angle. This angle is formed by three points: the shoulder, hip, and elbow. So, 
θShld can be computed as the dot product of the upper arm vector ������⃗(V1) and the torso vector 
������⃗(V2) , where ���⃗V1 begins at the shoulder and ends at the elbow, and the ���⃗V2 begins at the shoul-
der and ends at the hip as demonstrated by the subsequent equations:

(2)θShld = arccos

(
���⃗V1.

���⃗V2

�����⃗|V1||�����⃗V2|

)

Fig. 5   Keypoints coordinates of a Original data b Linear interpolation, c Rolling median filter d and Roll-
ing mean filter
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Where

Radians to degrees conversion can be accomplished using the following formula:

Similarly, the angles for other joints including arms, hips, and knees can be calculated and 
monitored over time in a video sequence to characterize the corresponding movements of infants.

Elbow angle  The elbow angle was calculated as the angle between the upper arm and 
forearm vectors with the elbow joint acting as the pivot point. This angle is formed by three 
points: the shoulder, elbow, and wrist [29]. To calculate the angle, we first calculated the 
vectors representing the upper arm and forearm by subtracting the coordinates of the elbow 
from the coordinates of the shoulder and wrist, respectively. Then, the cosine of the angle 
between these two vectors was computed using the dot product.

Hip angles  The hip angle is computed as the angle formed between the vectors of the 
thigh and the torso. This angle is shaped by three points: the knee, hip, and shoulder. The 
thigh vector is outlined by the line joining the knee and hip, whereas the vector of the torso 
is outlined by the line joining the hip and shoulder.

Knee angles  The knee angle is quantified as the angle intersecting the vectors of the thigh 
and the lower leg. This angle is constituted by a triad of anatomical landmarks of the hip, 
knee, and ankle. Definitions of these angles are summarized and visualized in Table 1.

Figure 6 illustrates the estimated angle orientations, derived using the proposed algo-
rithm, on a representative image from the test dataset as well as tracing of these angles 
at (a) shoulder, (b) elbow, (c) hip, and (d) knee in the subsequent frames. For visualiza-
tion purposes, only a selection of 200 subsequent frames is displayed to prevent a cluttered 
view. However, the entirety of the videos is utilized during experimentation and evaluation.

These angles can offer valuable insights into the range of motion for the shoulder, elbow, 
hip, and knee landmarks. The proposed model detects and tracks the joints and angles which 
are subsequently utilized to create a visual depiction of the infant’s movement as depicted in 
Fig. 7. It illustrates how the proposed system captures movement information like joint angles 
accurately where the orientations of the angles at predetermined joints are marked in the top-
left corner of each frame for example from the MINI-RGBD dataset [24]. Results are plotted 
for only the left and right knee angles for the first subsequent 200 frames for simplicity.

3.3.2 � Velocity and acceleration

To estimate quantities such as velocities and accelerations, it is necessary to look at multi-
ple frames rather than just a single frame. The velocity and acceleration can be estimated 
as the first- and second-order differences between successive frames.

���⃗V1 = Shoulder coordinate (x, y) − Hip coordinate (x, y)

���⃗V2 = Elbow coordinate (x, y) − Shoulder coordinate (x, y)

(3)θShld (deg) =
|||||

θShld(rad) ∗ 180

�

|||||
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Velocity  To describe the motion of the infants we calculate the velocity of their left and 
right hands. The velocity is calculated by evaluating the variation in the x and y coor-
dinates of the wrist landmarks between two consecutive frames, squaring them, adding 
them, and then taking the square root. This results in the Euclidean distance between the 

Table 1   Some important angle definitions

Fig. 6   Visualization and tracking of the angles at a Shoulder, b Elbow, c Hip, and d Knee
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wrist positions in two successive frames, serving as an approximation of the velocity of the 
hands. The velocity of the left hand at time t can be calculated as follows:

where xleft(t) and yleft(t) are the x and y coordinates of the left wrist at time t , respectively. 
Similarly, the velocity of the right hand at time t is calculated as follows:

where xright(t) and yright(t) are the x and y coordinates of the right wrist at time t , respec-
tively. This method allows us to capture the rate of change in position over time. Figure 8 
(a) draws velocities of both hands against time.

Acceleration  The left and right-hand acceleration can be computed by taking the differ-
ence between their velocities in two consecutive frames. The left-hand acceleration at time 
t can be calculated as follows:

(4)vleft(t) =

√
(xleft(t) − xleft(t − 1))2 + (yleft(t) − yleft(t − 1))2

(5)vright(t) =

√
(xright(t) − xright(t − 1))2 + (yright(t) − yright(t − 1))2

Fig. 7   Annotation of the infant movement and tracking of left and right knee angles

Fig. 8   a Velocities and b accelerations of the left and right hands
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where vleft(t) is the velocity of the left hand at time t . Similarly, the right-hand acceleration 
at time t is calculated as follows:

where vright(t) is the velocity of the right hand at time t . Examples of predicted hands accel-
erations were elaborated in Fig. 8 (b).

3.3.3 � Anti‑gravity movements

It represents the movements that work against gravity, such as lifting a limb or sitting 
up. These movements require the use of muscles to generate force and overcome the 
pull of gravity. For example, when you lift your leg or arm, you are performing an anti-
gravity movement. To examine if the infant was performing these movements, anti-
gravity with arms and legs were computed. Figures 9 (a) and (b) track the y-coordinate 
of the wrists and ankles over time and use it as measures of the arm’s and leg’s anti-
gravity movement. The y-coordinate represents the vertical position of the wrists and 
ankles, so a decrease in their values indicates an anti-gravity movement (i.e., lifting the 
arm or leg).

3.3.4 � Additional features

The proposed method assesses motor milestones by tracking the spatial position of different 
body landmarks. Monitoring the movements of arms and legs is especially important when 
assessing the cognitive and motor development of infants [10]. Other features describing 
symmetry between the left and right sides are identified and computed. To further inves-
tigate the development CP, we measured several parameters that are commonly used as 
indicators for CP markers, as presented by [16]. For instance, the method can determine if 
an infant is bringing its hands together, reaching for its feet or knees, and more. Figure 10 
(a) measures the distance between hand and knee.

(6)aleft(t) = vleft(t) − vleft(t − 1)

(7)aright(t) = vright(t) − vright(t − 1)

Fig. 9   Anti-gravity movements for both a arms and b legs
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Symmetry of movement  The correlation between the movements of opposite limbs can 
be used to measure the synchronization of motion on both sides for infants. This param-
eter takes into account the magnitude and direction of limb movements and calculates 
the degree of correlation between the two sides. This approach can be applied to various 
limbs to analyze the symmetry of movement throughout the body. Figure 10 (b) assesses 
the symmetry of movement for both sides using left and right hips and can be expressed 
mathematically as follows:

In this formula, Symmetry(t) represents the symmetry of movement at time t , 
leftHipAngle(t) represents the angle of the left hip joint at time t , and RightHipAngle(t) 
represents the angle of the right hip joint at time t . The absolute value function |x| calcu-
lates the absolute variance between the hip angles, giving us a measure of how symmetric 
or asymmetric the movement is at that time point. By applying this formula at each time 
point, we can generate a time series of symmetry values that can be plotted and analyzed to 
gain insights into the infant’s movement patterns.

The quantities mentioned are just a subset of the possible quantities that can be 
quantitatively computed from the extracted poses. The model has the ability to calcu-
late several metrics, such as the distances from the neck to each wrist, and the distances 
from the left or right hip joint to the corresponding ankle, as well as other movements 
such as joining the hands, foot to foot contact, reaching for the feet, and rolling to the 
side. Moreover, a flowchart that illustrates CP prediction using the extracted feature 
set and pose estimation techniques is illustrated in Fig.  11. The process begins with 
reading frames, and then estimating the pose from these frames. Any noise in the pose 
estimation is smoothed out and corrections are made in the next step. A confidence 
score is then computed and checked against a threshold. If the score is greater than 
or equal to the threshold, the process moves to computing angles and extracting the 
underlying features. If the score is less than the threshold, the joint is simply ignored. 
The extracted features are then classified using various ML models and the results are 
evaluated and compared.

(8)Symmetry(t) = LeftHipAngle(t) − RightHipAngle(t)

Fig. 10   a Distance between hand and knee b Symmetry of movement for hips
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3.4 � Dataset

The MINI‑RGBD2 dataset [24]  Is a synthetic dataset that was designed to map real-world 
3D movements of infant, which were captured in a clinical environment, into virtual 3D 
infant models. This dataset was created and made publicly available for research purposes. 
Its primary goal is to facilitate the study and understanding of infant movements in a con-
trolled and replicable virtual environment. This dataset includes images of infants up to 
7 months old lying on their backs and facing the camera. The images were produced using 
the Skinned Multi-Infant Linear (SMIL) body model. This system is designed to generate 
lifelike sequences of infant bodies using both RGB and depth images, and it can accu-
rately provide 2D and 3D keypoints positions [9]. The MINI-RGBD dataset contains 12 

Fig. 11   Flowchart of infant CP prediction

2  http://s.​fhg.​de/​mini-​rgbd

http://s.fhg.de/mini-rgbd


	 Multimedia Tools and Applications

1 3

sequences of continuous motion, each with a resolution of 640 X 480 at 25 FPS and a 
length of 1000 frames. Out of the total videos, 8 are labeled as FM + and 4 as FM − [8]. 
These sequences are classified into various difficulty levels depending on the infants’ 
movements, ranging from lying flat with minimal limb movement, slight turning with limb 
interaction, and more complex movements such as turning to the side and grabbing their 
legs. To maintain the confidentiality of infants in recorded data, their actual forms and tex-
tures are not used. Instead, by averaging the data from several infants, new shapes and 
textures are created [5].

RVI‑38 dataset [8]  The assortment consists of 38 video fragments, each presenting a dis-
tinct infant aged from 2 to 5 months post-term. These footages were obtained during regu-
lar clinical check-ups using a handheld Sony DSC-RX100 Advanced Compact Premium 
Camera, which provides a 1920 X 1080 resolution at a speed of 25 FPS. The length of each 
video was varied, with the shortest being 40 s and the longest being 5 min. On average, the 
videos were approximately 3 min and 36 s long. Two skilled evaluators sorted the videos 
into two groups using the GMA; FM + and FM-. Out of the 38 videos, 32 were marked 
as FM + and 6 were identified as FM-. The dataset, which posed a significant challenge, 
was instrumental in determining the resilience of various motion features for classification, 
thereby contributing to the conceptualization of a feature fusion framework based on the 
GMA. The footage in these datasets was captured while the infants were at rest and not 
engaged with any toys or objects, mirroring the environmental conditions of the GMA test. 
It is worth mentioning that RVI-38 dataset was available only in JSON (Java Script Object 
Notation) format and the original video files were not accessible for this study.

3.5 � Binary classification for CP prediction

Once the features are extracted, they are inputted into conventional ML classifiers. This 
process allows for a comprehensive analysis of movement patterns and the subsequent pre-
diction of CP, based on the annotations given by the GMA evaluators. The classification 
framework employs a variety of ML algorithms, such as Support Vector Machine (SVM), 
Neural Networks (NN), Decision Tree (DT), Extra-Tree and eXtreme Gradient Boosting 
(XGBoost). A radial basis function (RBF) was utilized as the kernel for SVM, which is 
a common choice for its effectiveness in handling non-linearly separable data. The regu-
larization parameter (C) was tuned within the range of 2–5 to 25. For the NN classifier, 
we employed a multi-layer perceptron (MLP) architecture with a hidden layer size of 50 
neurons. The activation function used in the hidden layer was the Rectified Linear Unit 
(ReLU), known for its efficiency in handling non-linear relationships. The number of 
epochs was set to 100, and the learning rate was optimized using a grid search within the 
range of 10–5 to 10–2. The DT classifier did not require any specific parameter tuning, as it 
uses a simple decision-making process based on the input features. Extra-Tree Classifier, 
a variant of Random Forests (RF) was also used, is ensemble learning method that com-
bine multiple DTs to improve prediction accuracy and reduce overfitting. It bears a close 
resemblance to the RF, with the primary distinction being the way the DT in the forest are 
constructed. Each tree is given a random subset of k features from the total feature set. 
Each DT must then choose the optimal feature to partition the data, based on certain math-
ematical criteria. The performance of Extra-Tree classifiers was significantly influenced 
by several hyperparameters, including the number of trees (n_estimators), maximum tree 
depth (max_depth), minimum samples required to split a node (min_samples_split), and 



Multimedia Tools and Applications	

1 3

minimum samples per leaf (min_samples_leaf). Finally, XGBoost is a powerful gradient-
boosting algorithm that combines multiple weak prediction models (DTs) to create a strong 
predictive model. Similarly, XGBoost’s performance depends on various hyperparameters, 
such as the number of boosting rounds (n_estimators), maximum depth of trees (max_
depth), learning rate (eta), regularization parameters (alpha and lambda), and subsample 
rate (subsample and colsample_bytree). Overall, the model’s ultimate goal is to determine 
the presence FM + or absence FM- of FMs, which in turn helps classify the infant’s motion 
as either normal or abnormal. In simpler terms, the lack of FM serves as an indirect predic-
tor for CP. To assess the classifiers’ universality, a leave-one-subject-out cross-validation 
method is utilized.

4 � Experimental setting, results, and evaluation

The software for estimating poses and detecting joint angles was created using Python and 
Jupyter Notebook. The software has been tested locally but can be used on the web with 
further development. The hardware configuration used includes a laptop computer with the 
Intel Core i7- 7660U CPU 7th Generation Processor 2.5 GHz and 16 GB of memory. The 
MediaPipe pose estimator was selected for 2D pose estimation because it’s designed to 
operate on devices with restricted computational capabilities, like smartphones, and it can 
produce time series data [29]. Then, OpenPose [25] is considered as another 2D pose esti-
mation algorithm due to its robustness and efficiency. It excels in applications that require 
multi-person settings, demonstrating its ability to perform tasks accurately. This contributes 
to its widespread popularity in the field of ML and computer vision. Finally, MeTRAbs 
[26] is customized for estimating absolute 3D human poses from RGB images. It allows 
for the estimation of comprehensive, metric-scale poses without requiring knowledge of 
distance at the time of testing or reliance on assumptions about human body proportions.

4.1 � Classification results on MINI‑RGBD dataset

The results obtained from the application of three different models (MediaPipe, OpenPose, 
MeTRAbs) using five different classification algorithms (SVM, NN, DT, Extra-Tree and 
XGBoost) on the MINI RGBD dataset [24] provide interesting insights as presented in 
Fig. 12.

Accuracy (Acc) measures the proportion of total predictions that are correct [6]. Sen-
sitivity (Se) measures the ability of a binary classifier to correctly identify positive cases 
while Specificity (Sp) is the number of true negative instances divided by the total number 
of actual negative ones. In the analysis of the classification results, it is observed that the 
performance of the pose estimation methods varies significantly depending on the classifier 
used. The MediaPipe model, for instance, achieves its highest accuracy of 91.67% when 
paired with the NN classifier, but it shows the lowest sensitivity,75%, and specificity,62.5% 
when paired with the DT and XGBoost classifiers. On the other hand, the OpenPose model 
demonstrates consistent performance across all classifiers, with its highest accuracy of 
91.67% achieved when combined with SVM, DT, and XGBoost. It also achieves perfect 
specificity,100%, when paired with SVM and DT classifiers, although its sensitivity is 
slightly lower when paired with SVM and NN classifiers. The MeTRAbs model also exhib-
its consistent performance across all classifiers. It achieves the highest sensitivity of 100% 
when paired with SVM, DT, Extra-Tree, and XGBoost classifiers.
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These results highlight the significant impact of the choice of pose estimation method 
and classifier on the performance metrics. While some combinations achieve high accu-
racy, they may not perform as well on other metrics. This underscores the importance of 
considering all relevant performance metrics when evaluating different approaches. There-
fore, the choice of classifier should be carefully considered based on the specific require-
ments of the task. For instance, if high sensitivity is required, MeTRAbs paired with SVM, 
DT, or XGBoost would be a good choice. Conversely, if high specificity is required, Open-
Pose paired with SVM or DT would be preferable.

4.2 � Classification results on RVI‑38 dataset

In addition to the MINI RGBD dataset, we also applied the OpenPose model to the RVI-
38 dataset using the same classification algorithms. Despite the constraints of the data-
set, a comprehensive analysis demonstrated the efficacy of OpenPose in this context. The 
analysis of the OpenPose model across the underlying ML algorithms reveals a range of 
performances as depicted in Fig. 13. The results presented herein were derived from the 
application of the OpenPose algorithm to the RVI 38 dataset, which was available in JSON 
format. The original video files were not accessible for this study, thereby precluding the 
use of alternative algorithms such as Mediapipe and MeTRAbs. Despite these constraints, 
a comprehensive analysis was conducted using the available resources, demonstrating the 
efficacy of OpenPose in this context. For instance, SVM exhibits high overall accuracy at 
97.37% and perfect specificity at 100%, albeit with a slightly lower sensitivity at 83.33%. 
NN sees a drop in all three metrics, with accuracy at 84.21%, sensitivity at 66.67%, and 
specificity at 87.5%, indicating a lower overall performance. However, DT shows an 
improvement, with accuracy and specificity rising to 94.74% and 96.88% respectively, and 
sensitivity returning to 83.33%. Extra-Tree maintains the same accuracy but sees a drop in 
sensitivity to 66.67%, even as specificity reaches 100%. XGBoost mirrors the DT perfor-
mance, with identical values for all three metrics. These results underscore the variability 
in the model’s performance across different ML algorithms, particularly in its ability to 
correctly identify positive cases, as reflected in the sensitivity metric. 

Fig. 12   Classification results on MINI RGBD dataset
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In general, the 2D and 3D joint coordinates returned by (MediaPipe, OpenPose [25], 
and MeTRAbs [26] are not the same, as they represent the joint positions in different coor-
dinate systems. The 2D coordinates represent the keypoint positions in the image plane, 
while the 3D coordinates represent the keypoint positions in the real world. Typically, 3D 
pose estimators are expected to provide more accurate results than 2D pose estimation 
methods. 3D pose estimation methods consider the depth information of the scene, which 
allows for a more precise representation of the spatial relationships between different body 
parts. In contrast, 2D pose estimation techniques only consider the image plane and do not 
have access to depth information, which can result in ambiguities and inaccuracies in the 
predicted poses. Overall, the results suggest that the choice of pose detection techniques, 
exploring the more informative features, and selection of suitable classification methods 
can greatly impact the classification results. Thus, it is essential to carefully evaluate and 
compare different approaches to determine the most effective and efficient solution for pose 
estimation and classification.

4.3 � Comparison with previous work

This study demonstrates a significant improvement in the early detection of infantile 
CP over existing methods. Table 2 presents a comparison of different methods applied 
to various datasets and algorithms, evaluated based on accuracy, sensitivity, and speci-
ficity. The use of 2D and 3D pose estimation strategies to observe and scrutinize the 
infant’s comprehensive body movement attributes has shown to be a promising alterna-
tive to the GMA for early CP prediction. In comparison to the method presented in [1], 
which achieved an accuracy of 83.33% using a fully connected neural network (FCNet) 
and 90.28% with Conv1D-2 on the RGB-D dataset, the proposed method achieved a 
higher accuracy of 97.37% on the same dataset using ML algorithms. This indicates the 
effectiveness of the proposed method in classifying infant body movements into normal 
and abnormal categories. Furthermore, the proposed method outperforms the detection 

Fig. 13   Classification results on RVI-38 dataset
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technique introduced by [5] which achieved an accuracy of 91.67% on the RGB-D 
dataset. Despite the high sensitivity (87.5%) and specificity (100%) of the GMA-ML 
method, the proposed method still shows superior performance. When compared to the 
deep learning-based method for predicting CP on 557 infants presented in [7], which 
demonstrated a sensitivity of 71.4% and a specificity of 94.1%, the proposed method 
exhibits a higher accuracy. Although the deep learning method showed higher sensitiv-
ity and specificity values than the GMA tool, the accuracy of the deep learning method 
was not significantly improved (90.6% vs 85.9%). The ML method also applied to the 
557-infant dataset, had the lowest accuracy (72.7%), but its sensitivity (71.4%) was sim-
ilar to the other methods applied to this dataset, and its specificity (72.9%) was the low-
est among all methods. In contrast, the proposed method achieved a higher accuracy, 
further substantiating the efficacy of employing pose estimation techniques for the pre-
cocious prediction of infantile CP.

In conclusion, the proposed method provides a more accurate and efficient analysis 
of infant movement by computing various metrics such as angle orientations at different 
predicted joint locations, postural information, postural variability, movement velocity, 
movement variability, anti-gravity movements, and left–right movement coordination. 
These results highlight the importance of monitoring changes in joint angles over time 
for accurate diagnosis and treatment planning in the early detection of CP.

Furthermore, the proposed approach for early CP prediction offers several enhancements 
over existing methods, particularly in the areas of interpretability, computational efficiency, 
and versatility.

Interpretability  While deep learning techniques can often achieve high accuracy, they are 
typically seen as “black boxes” due to their complex internal workings. Our approach, on 
the other hand, relies on well-understood ML algorithms like SVM, NN, DT, Extra-tree, 
and XG-Boost which are more transparent and interpretable. This makes it easier for clini-
cians and researchers to understand the model’s predictions and trust its results.

Computational efficiency  Deep learning models, especially those that work with video 
data, can be computationally intensive and require significant resources to train and run. In 
contrast, our pose estimation approach is less resource-intensive, making it more accessible 
for use in a wider range of settings, including those with limited computational resources.

Table 2   Comparison with the state-of-the-art methods

Method Dataset Algorithm Accuracy % Sensitivity % Specificity %

McCay et al. [1] RGB-D Deep Learning (FCNet) 83.33 N/A N/A
Deep Learning 

(Conv1D-2)
90.28 N/A N/A

ML 83.33 N/A N/A
Wu et al. [5] RGB-D GMA-ML 91.67 87.5 100
Groos et al. [7] 557 infant Deep Learning 90.6 71.4 94.1

GMA 85.9 70.0 88.7
ML 72.7 71.4 72.9

Proposed RGB-D, RVI-38 ML 91.67
97.37

100
83.33

87.5
100
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Versatility  Our approach is versatile in that it can work with both 2D and 3D pose estima-
tion strategies. This allows it to analyze a wide range of infant body movement attributes 
and adapt to different data sources and conditions.

5 � Discussion

GMA is a method for evaluating the neurological development of infants, but it requires 
a trained expert and suffers from human variability. In order to tackle these chal-
lenges, it’s necessary to implement automated analysis through non-intrusive, afford-
able techniques that can be utilized in a patient’s home. This method would enhance 
the accessibility of testing and offer the possibility of analyzing data remotely without 
the requirement for specialized equipment. We have evaluated the performance com-
putational efficiency and interpretability to highlight the strengths and limitations of 
each approach. Our approach offers a detailed analysis through various metrics provid-
ing comprehensive insights but might require extensive feature engineering compared 
to deep learning methods which can automatically extract features. However, our ML 
classifiers might be faster and require fewer computational resources compared to deep 
learning models which are typically resource-intensive. The proposed approach signifi-
cantly enhances the interpretability of the model compared to deep learning models, 
which are often referred to as “black box” due to their complex internal workings. The 
ML algorithms we use, such as SVM, NN, DT, Extra-tree, and XG-Boost, are more 
transparent and their decision-making processes can be more easily understood. On the 
other hand, deep learning models involve multiple layers of computation, which makes 

Fig. 14   Random frames from MINI-RGBD [24] dataset overlaid with the estimated poses using a Media-
Pipe, b OpenPose, and c MeTRAbs
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it difficult to trace how the input data is transformed into output predictions. While they 
can often achieve high accuracy, their lack of interpretability can be a drawback, espe-
cially in medical applications where understanding the reasoning behind a prediction 
can be as important as the prediction itself. The main goal of our research is to show 
the viability of monitoring infant CP at home using 2D video recordings and 2D and 
3D pose estimation frameworks. Figure  14 illustrates the predicted locations of key 
joints in randomly chosen frames from the MINI-RGBD sequences using three distinct 
techniques.

According to the GMA theory, the patterns of movements for infants with typical 
development are more intricate, whereas those of infants with abnormalities are usually 
simple and repetitive [5]. In infants who are developing normally, spontaneous whole-
body movements are coordinated, and the movements of each limb are relatively auton-
omous. However, there’s a coordination of whole-body movements resulting from the 
concurrent contraction and muscle relaxation.

As elaborated in Fig.  15, the knee angles for the normal infant appear to be more 
consistent and smoother compared to the CP infant which indicates better coordination 
in the normal infant. The CP infant’s graph shows more variability, sharper peaks, and 
troughs compared to the normal infant. This could be indicative of sudden, uncontrolled 
movements, which are common in CP patients. Looking at the timing of the peaks in the 
knee angles, we can make some observations about the coordination between the limbs. 
If the peaks for the left and right knee angles occur at similar times, this would suggest 
that there is a simultaneous or mirrored movement happening in both limbs. This is 
often indicative of a well-coordinated and balanced motion. On the other hand, if the 
peaks occur at different times, this might indicate a lag or delay in one limb compared 
to the other. This could be a sign of asymmetrical motion, where one limb is not mov-
ing in synchronous with the other. Sudden, rapid changes in joint angles can be used 
to characterize spasmodic, abrupt, and sporadic movements. By using pose estimation 
techniques to analyze the changes in joint angles over time, it may be possible to detect 
these types of movements. For instance, a rapid and abrupt change in the angle of a joint 
such as the elbow or knee could indicate a spasmodic movement. Similarly, if multiple 
joints change their angles rapidly and sporadically, this could indicate sporadic move-
ments. By examining the patterns of joint angle changes over time, these types of move-
ments can be detected and characterized.

Fig. 15   Left and right knee angles for a Normal and b CP infants
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In the context of infant movement analysis, antigravity movements refer to the abil-
ity of an infant to move a body part against the force of gravity. For example, lifting 
an arm or leg while lying on the back would be considered an antigravity movement. 
In a normal infant, antigravity movements of the ankles and wrists would typically be 
smooth and coordinated as elaborated in Fig.  16 (a). The infant would be able to lift 
their limbs against gravity and move them in a controlled manner. This is part of the 
normal development of motor skills and muscle strength. In contrast, CP infants might 
show different patterns as shown in Fig. 16 (b). Their antigravity movements could be 
less controlled and more restricted. They might struggle to lift their limbs against grav-
ity, or their movements might appear stiff or jerky. This is due to the motor impairment 
associated with CP, which can affect muscle control and coordination.

This graph provides a visual representation of the infant’s anti-gravity movements 
for both sides of ankles and wrists over time for one of the MINI RGBD dataset. From 
the graph, it appears that the velocity of left and right ankles and wrists in normal 
infants (left panel) shows a smooth curve, indicating a steady and consistent move-
ment. However, in the CP infant (right panel), the curve is more jagged, suggesting 
variability and inconsistency in the movement. The findings of this research indicate 
that the pose estimation of spontaneous infant movements holds significant promise 
for aiding research efforts in the early identification of CP in infants. The proposed 
pose and velocity-based method is easier to comprehend, maintains intelligible infor-
mation, and requires tuning of fewer parameters compared to similar methods, thereby 
making it more suitable for use in a clinical environment. By simply one glance at 

Fig. 16   Examples of antigravity movement a normal infants b CP infants
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the plotted angles, doctors can get an impression of the quality of movement. For 
instance, it would be quite noticeable if there’s a lack of movement on one side or limb 
of the body. Motion characteristics derived from angles, paths, speeds, accelerations, 
and movements against gravity have proven effective in detecting and forecasting CP. 
Moreover, the system is cost-effective, simple to install, can be operated by non-spe-
cialists, and is non-disruptive for infants.

6 � Conclusion

This study introduces an innovative approach for the early prediction of CP by utiliz-
ing pose estimation strategies to observe and analyze comprehensive infant movement 
attributes. This method offers a valuable alternative to the GMA by monitoring a vari-
ety of features and specific markers indicative of CP, including postural information, 
movement variability, left–right movement coordination, and antigravity movements. 
The effectiveness of this approach has been demonstrated through an experimental 
evaluation using the MINI-RGBD and RVI-38 sequences. One of the key contributions 
of this study is the development of a comprehensive method for automated analysis of 
infant motor development. This method has the potential to aid in the early prediction 
of CP and offers a non-invasive, cost-effective, and accessible testing solution. Fur-
thermore, this study presents a promising approach that can contribute to expanding 
our understanding of joint movements and positions over time. For future work, there 
is potential to expand the dataset and incorporate additional features to improve the 
accuracy and generalizability of the model. Moreover, extending this approach to other 
pathologies and developmental disorders such as Torticollis, Ataxia, and Developmen-
tal Dysplasia of the Hip (DDH) could broaden our understanding of pediatric motor 
development beyond CP. This could lead to the development of more comprehensive 
and effective diagnostic tools for a range of conditions, ultimately improving outcomes 
for affected children.
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