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AbstractAbstractAbstractAbstract    
    
Currently, more than half of the global nations cultivating wheat crops are facing severe consequences 

of climate change and its associated heat stress in terms of quantitative and qualitative yield losses. Plants 
exposed to heat stress need a balanced and adequate amount of mineral nutrients to counter its ill effects. 
Therefore, the present study was designed to investigate the potential effects of heat stress applied during the 
vegetative growth period (Zadoks growth scale: ZGS 5-60) on physiological and phenotypic traits of wheat 
(Triticum aestivum) crop subjected to variable rates of nitrogen (N). In this experiment, wheat plants of cv. 

‘Punjab-2011’ were exposed to two levels of temperature i.e. heat stress (HS) and control or non-heat stress 
(NHS), and three N rates (N50 = 50 kg ha-1, N100= 100 kg ha-1 and N150 = 150 kg ha-1). The experiment was 
executed under controlled conditions in a completely randomized design (CRD) with six replications. One set 
of eighteen pots containing wheat seedlings was placed in a compartment of the greenhouse under heat-stressed 
conditions, while another set was placed in another compartment under non-heated conditions. The 
greenhouse compartments were equipped with a heating and cooling system to maintain desired ecological 
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conditions. Pots in heated chamber were kept for 60 days from emergence (ZGS = 5-60), and then shifted to 
non-heated chamber till harvesting. The temperature in heat stress treatment was almost 2 ± 0.47 °C higher 
than in non-heated treatment. The results indicated that HS significantly reduced the photosynthetic rate by 
42.52%, leaf photosynthetic efficiency by 56.82%, chlorophyll scores by 20.11%, relative water contents 
(RWC) by 12.81%, tillers by 48.21%, grain weight by 21.47% and grain yield by 68.20% relative to NHS 
conditions. These reductions were more prominent in plants subjected to a limited N dose rate (50 kg N ha-1). 
Furthermore, the results also revealed higher transpiration rate, stomatal conductance, and membrane ruptures 
under HS with N50 treatment.  However, N150 treatment compensated for the detrimental effects of HS on 
wheat plants by improving the photosynthetic rate and efficiencies, higher RWC, more stability of membrane 
and pigments, more tillers, and higher grain weight, and grain yield of wheat. Additionally, grain yield was 
negatively correlated with transpiration rate, stomatal conductance, internal CO2 concentration, and 
membrane leakage. In conclusion, a high dose rate of N under high temperatures during vegetative growth 
could alleviate the magnitude of penalties to grain yield and enhance the potential of wheat crops to withstand 
heat-induced detrimental effects. 

    
Keywords:Keywords:Keywords:Keywords: heat stress; N rates; phenotypic traits; physiological traits; wheat 

 
 
IntroductionIntroductionIntroductionIntroduction    
 
During the last century, the mean global surface temperature has increased by 0.6 °C and a further 

increase of 1.4 to 5.8 °C is also anticipated by the end of current century. Pakistan is among the top ten countries 
which are vulnerable to extreme climatic events and global climate change (Kreft et al., 2017). In Pakistan, an 

upsurge of approximately 0.57 °C in mean temperature had also been recorded from 1961-2014. Moreover, it 
is also projected that future temperatures will rise by 2.8/2.2 °C day/night temperatures at the end of 2069 
especially in rice-wheat zones of Pakistan (Ahmad et al., 2015; Nazir et al., 2021). This rapid increase in 

temperature would be the biggest environmental challenge for future sustainable production of major cereal 
crops such as wheat, rice, barley and oat (Fu and Huang, 2003). 

The rising temperature beyond threshold limit normally cause irreversible damage to crop plants 
particularly in terms of stunted growth and development which ultimately lead to significant yield reductions 
(Laghari et al., 2010; Khosa et al., 2022). It had been anticipated that 2-3 °C increment in mean global 

temperature would reduce the grain yield of wheat by 14-17% during mid-century period (2040-69) (Ahmed 
et al., 2015). Heat stress is responsible for rapid cell destruction in wheat plants along with other significant 

damages such as reduced seed germination, stunted plant growth, sterility of pollen and abortion of plant 
ovaries (Mukhtar et al., 2020; Ding et al., 2021). Moreover, the growth-sensitive stages of wheat plant such as 

anthesis, grain filling, and reproduction are also prone to adverse effects of heat stress and rising temperature 
(Ahuja et al., 2010; Mittler and Blumwald, 2010). Heat stress imposed at germination, seedling and grain filling 

stage is more detrimental for wheat crop as compared to rest of the growth stages (Munns et al., 2006). It 

significantly affects the stability of vital cellular component such as proteins, membranes, lipids and nucleic 
acid (Asseng et al., 2003; Zaman et al., 2022) and also interrupts normal functioning of various physiological 

and biochemical processes (Hamam and Khaled, 2009; Ruelland and Zachowski, 2010; Fleitas et al., 2020). 

Furthermore, heat stress could drastically mutilate plant photosynthetic activity, stomatal conductance, 
transpiration rate, and grain filling rate in wheat crop (Ruelland and Zachowski, 2010). The prime reason 
associated with disruption of these vital plant processes could be outburst of singlet oxygen, superoxide, 
hydrogen peroxide and hydroxyl radicals which are major active oxygen species (AOS) producers under a wide 
range of abiotic stressed conditions (Yasmeen et al., 2014). These AOS impose a significant detrimental impact 

on the membranous structures of crop plant (Shaukat et al., 2021). Moreover, Asseng et al. (2003) evaluated 
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the response of 30 wheat genotypes at varying temperatures ranging from 15 °C to 32 °C with the help of crop 
simulation models, and reported that wheat grain yield could reduce up to 28% and 55% respectively against 
an increase of 2 °C and 4 °C rise in temperature. The greater decline in wheat yield due to unequivocal rising 
of temperature is mainly attributed to the production of active oxygen species (AOS) (Farooq et al., 2009).  

Plants need adequate and proper supply of mineral nutrients for driving essential physiological processes 
and maintaining their structural stability (Hassan et al., 2020). Nutrients are a vital components of different 

plant systems and play important role in coordination of several developmental and physiological processes in 
plants such as respiration, photosynthesis, root and shoot growth, seed germination and flower development 
(Khan et al., 2023). Moreover, exogenous applications of certain minerals are also involved in improving heat 

tolerance in crop plant by regulating stomatal conductance and upregulation of metabolic and physiological 
processes (Khan et al., 2023).  

Among different nutrients, nitrogen (N) is an essential structural component of numerous organic 
compounds such as proteins, Rubisco, chlorophyll, nucleic acids as well as some phytohormones (Pessarakli, 
2001). Moreover, N fertilization is also a vital agronomic strategy to enhance the productivity of crop plants 
(Ata-Ul-Karim et al., 2016). An appropriate level of N is compulsory not only to regulate plant growth and 

development but also to cope wider range of environmental stresses (Zhu et al., 2014; Boschma et al., 2015). It 

also has the potential to ameliorate the negative impacts of different abiotic stresses by maintaining higher leaf 
water relation and membrane stability (Saneoka et al., 2004; Zhang et al., 2007). Previous studies have also 

indicated the improved heat tolerance of crop plants by exogenous supplementation of NH4NO3 due to their 
higher scavenging potential of antioxidants (Fu and Huang, 2003) and inhibition of lipid peroxidation (Zhang 
et al., 2007).  

Wheat (Triticum aestivum L.) is one of the most important cereal and staple food crop providing a 

significant proportion of nutrition to ever-burgeoning world population (Anjum et al., 2005; Seleiman et al., 

2019; Taha et al., 2021; Jones et al., 2023). In Pakistan, it is also the most widely cultivated and consumed 

cereal crop. The optimum sowing time of wheat in Pakistan is month of November (Afzal et al., 2011), but due 

to current global climatic variations, a shift in its sowing time had also been noticed (Ahmad et al., 2015). 

Moreover, five years historic weather data showed significant fluctuations in temperature even in the month of 
November and December. Extreme weather events, though ephemeral, have potential to cause shifts in the 
structure of plant communities and affects their growth and yield (Wang et al., 2008). In certain cases, the rapid 

and sudden climatic events happening during critical growth stages of a plant might inflict more damage to 
crops than seasonal ecological changes (Karl et al., 1997). Keeping in view the global climatic variations, it can 

be anticipated that in near future wheat crop might face the consequences of heat stress even in month of 
December.  

Previously no study has explored the effect of heat stress imposed at vegetative stage of wheat plants on 
their gas-exchange parameters, foliar chlorophyll (chl) and water contents, membrane stability index (MSI) and 

grain yield. It was hypothesized that N addition could ameliorate the negative effects of heat stress by improving 
photosynthetic rate and efficiency, leaf chl and water contents, membrane stability, grain yield and related 

attributes of wheat plants. Hence, the current study was organized with aims to examine the detrimental effects 
of vegetatively imposed heat stress (ZGS 5-60) on gas-exchange measurements, tolerance traits, yield and 
related traits of wheat under variable doses of N. 

 
 
 
 
 
 
 



Shaukat M et al. (2024). Not Bot Horti Agrobo 52(1):13471 

 

4 

 

 

 

 

 

 

Materials and MethodsMaterials and MethodsMaterials and MethodsMaterials and Methods    
 
Study site 

The current experiment was conducted at Climate Change Studies and Glasshouse Laboratory, 
operated by Department of Agronomy, University of Agriculture, Faisalabad (31.4400° N, 73.0748° E). The 
soil used in this controlled experiment was collected at 0-15 cm depth from agronomic research area. The soil 
type was silt loam (coarse-silty, mixed, hyperthermic Typic Calciargids) in the layallpur soil series. The collected 
soil was well-drained, and the fraction of clay, silt and sand in the top 10 cm of the soil were 10, 56, and 34%, 
respectively. Other parameters in the soil profile were: bulk density, 1.24 g cm−3; organic carbon content, 0.53 
g kg−1; total nitrogen (N) content, 4.0 g kg−1 and pH, 8.3.   

 

Experimental setup 

Thirty-six concrete pots (height: 24 cm, top diameter: 25 cm, bottom diameter: 17 cm) were used in the 
experiment which were filled with 6 kg of sieved soils (2 mm mesh). Further, two sets of eighteen pots were 
made: one set placed in a chamber/partitioning of greenhouse indicated as heated chamber and second set in 
another chamber indicated as controlled or non-heated chamber. The pots in both sets were arranged in 
completely randomized design (CRD) with factorial arrangements. Pots in heated chamber were kept for 60 
days from emergence (Zadoks growth scale – ZGS = 5-60), then shifted to non-heated chamber till harvesting. 
Three varying rates of N i.e., N50 = 50, N100 = 100 and N150 = 150 kg N ha-1 were randomly applied to both sets 
of pots. The greenhouse designated as heated was equipped with auto-heating system. Temperature data were 
recorded four times per day (9:00 am, 12:00 noon, 3:00 pm and 5:00 pm) with digital thermometer (Beurer 
Thermo Hygrometer, HM-16) in the heated chamber pots at four different points. The temperature in heat 
stress treatment was almost 2 ± 0.47 °C higher than non-heated treatment (Figure 1).  

 

 
Figure Figure Figure Figure 1111.... Average temperature variations from emergence to 60 days under heated and non-heated 
greenhouse conditions 
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Crop husbandry 

Before filling the collected sieved soils in each pot, all fertilizers including nitrogen (50, 100 and 150 kg 
ha-1), potassium (60 kg ha-1) and phosphorus (80 kg ha-1) were thoroughly mixed with potting soil. The seeds 
of wheat cv. ‘Punjab-2011’ were purchased from Punjab Seed Corporation with seed purity and germination 
percentages over 95%. All the pots were sprinkled irrigated with appropriate quantity of water to attain 
optimum moisture for sowing. The dry seeds of wheat cv. ‘Punjab-2011’ were sown on 20th November, 2018. 
After seedling emergence, a total of four healthy vigorous plants were maintained in each pot.  Weeding was 
done manually at maximum tillering stage (Zadoks growth scale – ZGS = 24–27) (Talukder et al., 2014). 

Irrigations were scheduled as; first irrigation at crown root initiation (25 days after sowing; DAS), second 
irrigation at jointing (45 DAS), third irrigation at booting stage (80 DAS), fourth irrigation at heading (110 
DAS) and final irrigation at milking stage (130 DAS) of the crop. At maturity (155 DAS), plants were 
harvested and threshed manually.  

 
Plant measurements   

Allometric traits  
At maturity, productive tillers per plant were counted and averaged for each pot. All plants in each pot 

were harvested and weighed to measure the biological biomass of each treatment. For grains per spike, five 
representative spikes were threshed, and grains were counted and averaged. Afterwards, all remaining plants 
were threshed manually, and grain yield (gm) per pot was measured.  A sample of thousand grains was taken, 
and 1000-grain weight was measured.   

 
Physiological traits 
Physiological performance, plant pigments, and stress tolerance indicators i.e., membrane integrity and 

relative water contents (RWC) were assessed using photosynthetic gas-exchange, foliar chlorophyll content, 
foliar membrane leakage and water saturation. Gas exchange and chlorophyll measurements were made at 30, 
45, 60, 75 and 90 DAS on the most recently expanded and matured leaf of representative plants in each pot. 
Gas exchange traits including leaf net photosynthetic rate (Pn), transpiration rate (T), leaf photosynthetic 
efficiency (Pn/T), Leaf CO2 concentration (Ci) and stomatal conductance (gs) were recorded using an LCi T 
photosynthesis system (ADC BioScientific Ltd. UK), between 10:00-14:00 local time at light 1000-1500 µmol 
m2s-1 PAR, 410 ppm CO2, leaf temperatures of 20-30 °C and humidity in both chambers ranged between 45-
60%. Moreover, chlorophyll scores were measured with chlorophyll tester (CI-202). During each observation 
day, four sequential measurements of gas-exchange traits were made at 30-second intervals at the same plant’s 
leaf, while chlorophyll scores were recorded from random locations on each measured leaf. Later, mean of four 
measurements were taken.  

  Furthermore, membrane integrity and RWC were recorded by destructive sampling of flag leaves of 
two plants at 100 DAS. Membrane permeability was determined in term of electrolyte leakage using a method 
proposed by Blum and Ebercon (1981). In this method, six segments of leaves with equal size were immersed 
in distilled water for 12 h. After this, the measurements of electrical conductivity (EC1) of the solution were 
made using EC meter. The samples were shifted to autoclave with water for 01 h at 50 °C. Next, the samples 
were cooled down at room temperature for 2 h, and conductivity of killed tissues (EC2) was measured. 
Membrane permeability was calculated as the ratio between EC1 and EC2. For RWC, fresh leaves were weighed 
to get fresh weight (Wf). Later, these leaves were soaked in water for 4 h to record saturated weight (Ws). Leaves 
were then dried in an oven at 70 °C for 24 h to record dry weight (Wd). RWC was calculated as:  

RWC =  
(��) (�
) 

(��) (�
)
 × 100 
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Statistical analysis  

The experiment was carried out in a completely randomized design (CRD), and every treatment’s 
combination was replicated six times. A two-way analysis of variance (for HS and N fertilizer) following least 
significant difference (LSD) test was applied to compare the mean values of each measured trait with the help 
of Statistix 8.1 software.  The statistical significance among treatments were based on a probability level of 5% 
(P ≤ 0.05). Further, pearson correlation co-efficient was also estimated to assess the strength of relationship 

among recorded traits of wheat. Visualization of data was aided by SigmaPlot (Systat Software, San Jose, CA). 
 
    
ResultsResultsResultsResults    
 
Gas exchange measurements 

The result of the experiment revealed that net photosynthetic rate (Pn), transpiration rate (T), stomatal 
conductance (Gs), internal CO2 concentration (Ci) and leaf photosynthetic efficiency were significantly (P ≤ 

0.05) influenced by heat stress (HS) and N fertilization (Figure 2 a-e). Heat stress imposed a general decrease 
in Pn, and this decrease was more pronounced in plants subjected to 50 kg N ha-1 (N50 treatment). However, a 
statistically similar Pn values were recorded from plants receiving 100 kg N ha-1 (N100) and 150 kg N ha-1 (N150). 
In general, HS reduced Pn by 42.52% in plants grown under all N treatments relative to non-heated plants 
under same N treatments (Figure 2a). Interestingly, T, Gs and Ci were more pronounced in plants receiving N 
treatments placed in HS condition, but this increase in T, Gs and Ci was less pronounced under N150 treatment 
(Figure 2b-d). HS imposed a decreasing trend in leaf photosynthetic efficiency (E) of plants grown in N150 to 
N50 treatments compared with plants of non-heat stress and N treatments. Generally, HS reduced E by 56.82% 
relative to non-heated plants under N fertilization (Figure 2e). 

 

 
Figure 2.Figure 2.Figure 2.Figure 2. Effect of heat stress on (a) net photosynthetic rate (µmol CO2 m-2 s-1), (b) Transpiration rate 
(mmol H2O m-2 s-1), (c) stomatal conductance (mmol CO2 m-2 s-1), (d) internal CO2 concentration (vpm) 
and (e) leaf photosynthetic efficiency of wheat under different N treatments 
Bars bearing different lower-case letters are significantly different at P ≤ 0.05. Vertical bars indicate SD values.  
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Stress tolerance traits (chlorophyll score, membrane leakage and relative water content) 

The chlorophyll score, membrane leakage and relative water content (RWC) also differed significantly 
(P ≤ 0.05) in heated and non-heated plants at various N treatments (Figure 3a-c). Maximum value of 

chlorophyll score (0.94) was measured from N150 under non-heat stress condition, and it was statistically similar 
with plants grown at N150 and N100 treatments under heated and non-heated conditions respectively (Figure 
3a). Generally, HS reduced chlorophyll scores by 20.11% relative to the controlled condition. Furthermore, 
similar trends were also found with RWC, and in this case HS reduced leaf RWC by 12.81% compared to the 
non-heated plants (Figure 3b). More leakage of membrane was observed from N50 treatment under HS 
condition, however, high N rates resulted comparatively lower leakage under both HS and NHS conditions 
(Figure 3c). 

 

Figure 3.Figure 3.Figure 3.Figure 3.    Effect of heat stress on (a) chlorophyll score, (b) relative water content (%) and (c) membrane 
leakage of wheat under different N treatments 
Bars bearing different lower-case letters are significantly different at P ≤ 0.05. Vertical bars indicate SD values.       
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Allometric traits 

Heat stress and N fertilization significantly ((((P ≤ 0.05) affected plant height and productive tillers of 

wheat crop (Figure 4a-b). Plants with reduced height were recorded from all N treatments under heat stress 
condition. In general, HS reduced plant height by 13.38% relative to non-heat stressed conditions (Figure 4a). 
Additionally, HS resulted in pronounced reduction in tillers under all N rates in comparison with that from 
plants grown under non-heat stress at various N treatments. Similarly, HS reduced productive tillers by 48.21% 
under all N treatments relative to the non-heated plants grown under same N doses (Figure 4b).  

Similarly, grains per spike and 1000-grain weights also demonstrated significant ((((P ≤ 0.05) difference 

under heat and all N treatments (Figure 5a-b). Heat stress resulted in pronounced decline in number of grains 
at N50 and N100 treatments, however, plants with N150 treatment produced similar number of grains as found 
in N100 treatment under normal condition. Heat stress in general, imposed a reduction in number of grains by 
17.84% relative to the plants grown under normal condition (Figure 5a).  Similarly, HS also reduced the grain 
weight by 21.47% relative to normal condition, and this reduction in grain weight was more pronounced in 
plants subjected to N50 and N100 treatments (Figure 5b). 

 

 
Figure 4Figure 4Figure 4Figure 4....    Effect of heat stress on (a)plant height and (b) productive tiller palnt-1 of wheat under different 
N treatments  
Bars bearing different lower-case letters are significantly different at P ≤ 0.05. Vertical bars indicate SD values.          
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Figure 5Figure 5Figure 5Figure 5....    Effect of heat stress on (a) grains per spike and (b) 1000-grain weight of wheat under different N 
treatments 
Bars bearing different lower-case letters are significantly different at P ≤ 0.05. Vertical bars indicate SD values.          

 
Moreover, HS and N fertilization had a significant (P ≤ 0.05) effect on grain yield and harvest index 

(HI) of wheat crop (Figure 6a-b). Maximum grain yield was noted from plant subjected to N150 treatment 
followed by N100 treatment under normal condition. However, HS reduced grain yield by 68.20% under all N 
treatments relative to normal condition, and this decline in grain yield was more pronounced in N50 and N100 
treatments (Figure 6a). Further, HS also reduced the HI by 23.42% relative to normal conditions (Figure 6b). 
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Figure 6Figure 6Figure 6Figure 6....    Effect of heat stress on (a) grain yield and (b) harvest index of wheat under various N treatments 
Bars bearing different lower-case letters are significantly different at P ≤ 0.05. Vertical bars indicate SD values.          

 
Pearson’s correlation (r) 

Grain yield of wheat was significantly (P ≤ 0.05) but negatively correlated with transpiration rate, 

stomatal conductance, internal CO2 concentration and membrane leakage. However, grain yield was linearly 
and positively correlated with grains per spike, 1000-grain weight, net leaf photosynthetic rate, foliar water and 
chlorophyll contents as the values r ranged from 0.79 to 0.89 (Table 1). Similar negative relationships of grains 
per spike, 1000-grain weight and net photosynthetic rate were found with transpiration rate, stomatal 
conductance, internal CO2 concentration and membrane leakage. In this case, the value of r ranged from -0.70 
to -0.94.  However, grains per spike, 1000-grain weight and net photosynthetic rate were linearly and positively 
correlated with relative water content and chlorophyll concentration. Furthermore, stomatal conductance and 
transpiration rate were linearly and positively correlated with membrane permeability (Table 1). 
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Table 1Table 1Table 1Table 1. Pearson correlation coefficient (r) among characters recorded during this study 

CharacterCharacterCharacterCharacter    
CharacterCharacterCharacterCharacter    

GYGYGYGY    GPSGPSGPSGPS    TGWTGWTGWTGW    PnPnPnPn    TTTT    GsGsGsGs    CiCiCiCi    MPMPMPMP    RWCRWCRWCRWC    ChlChlChlChl    

GY 1.00          

GPS 0.79** 1.00         

TGW 0.82** 0.91** 1.00        

Pn 0.89** 0.95** 0.96** 1.00       

T -0.88** -0.91** -0.88** -0.94** 1.00      

gs -0.58* -0.77** -0.69** -0.70** 0.75** 1.00     

Ci -0.58* -0.77** -0.69** -0.70** 0.75** 1.00** 1.00    

MP -0.88** -0.90** -0.86** -0.92** 0.99** 0.75** 0.75** 1.00   

RWC 0.83** 0.96** 0.94** 0.96** -0.94** -0.67** -0.67** -0.92** 1.00  

Chl 0.87** 0.90** 0.87** 0.92** -0.88** -0.50* -0.50* -0.86** 0.95** 1.00 

GY, grain yield; GPS, grain per spike; TGW, thousand-grain weight; Pn, net photosynthetic rate; T, transpiration rate; 
gs, stomatal conductance; Ci, internal CO2 concentration; MP, membrane permeability; RWC, relative water content; 
Chl, chlorophyll contents 

*Statistically significant at P ≤ 0.05, **Statistically significant at P ≤ 0.01 

 
 
DiscussionDiscussionDiscussionDiscussion    
 
Climate change is emerging as a significant threat to the productivity of major field crops, particularly 

altering the sowing periods of major cereal crops. Keeping in view the ongoing changes in global climate, it is 
imperative to accelerate efforts to mitigate the harmful impacts of high temperatures on crop growth (Kumar 
et al., 2013; Asseng et al., 2015). The rising global average temperature poses a serious threat to wheat 

production (Lobell et al., 2008; Ortiz et al., 2008). Pakistan, due to its geographical position, is particularly 

susceptible to the effects of climate change as compared to other Asian countries (Ahmad et al., 2015; Poudel 

and Poudel, 2020; Rehman et al., 2021; Ullah et al., 2022). It is predicted that in future there would be a change 

in sowing time of wheat crop due to climate shifts, thus, planting wheat in early November might lead to 
potential early exposure to heat stress. Generally, wheat develop various physiological mechanisms to address 
harvest-end heat stress. These mechanisms encompass early maturity (Joshi et al., 2007; Mondal et al., 2013), 

lowered canopy temperature and substantial biomass accumulation (Pinto and Reynolds, 2015), along with 
production of higher stem water-soluble carbohydrates, which facilitates the conversion of assimilates into yield 
(Blum et al., 1994). Elevated temperatures induce various changes in the physiological, biological, and 

biochemical processes in wheat (Asseng et al., 2015). In wheat, HS leads to inferior seed germination, shortened 

grain-filling duration, reduced grain numbers, inactivation of the Rubisco enzyme, lowered photosynthetic 
capacity, reduced rate of assimilate translocation, premature leaf senescence, decreased chlorophyll content, 
and ultimately results in reduced yield (Hossain et al., 2013; Kumar et al., 2016; Pandey et al., 2019). Therefore, 

current study focused on assessing the impact of heat stress induction during vegetative stage of wheat crop 
(ZGS 5-60) by maintaining a temperature that is 2 ± 0. 47 °C higher than untreated control (Figure 1). 

Photosynthesis stands out as the paramount physiological process in plants, and its efficiency is 
significantly impacted by higher temperatures. It is reported that within wheat, the sensitivity to heat stress is 
most pronounced in the stroma and thylakoid lamellae (Mathur et al., 2014). The translocation of 

photosynthetic products to various plant parts is essential for growth and development. However, under HS, 
the rate of assimilate translocation from source to sink is hindered due to a decrease in membrane stability, 
disturbing the photosynthetic rate due to accelerated degradative processes (Ruelland and Zachowski, 2010; 
Farooq et al., 2011; Zlatev and Lidon, 2012). In our study, HS reduced the net accumulation of photosynthates 
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by 42.52% compared to the non-heated conditions at various N treatments (Figure 2a). When net 
photosynthesis is inhibited, the most of photosynthetic reserves are consumed in continuous respiration (Abid 
et al., 2016). This study also reported the higher levels of transpiration rate and stomatal conductance in plants 

under heated conditions (Figure 2b-c), possibly linked with more rapture of cell membrane under HS (Figure 
3c). Despite the reduction of nitrogen levels under HS (Ordóñez et al., 2015), study reported that the 

application of N posed beneficial effects on plants subjected to high temperatures (Wang et al., 2008). In this 

study, improvements in net photosynthate accumulation and leaf photosynthetic efficiency by supplying 
higher rate of N were observed (Figure 2a-c). Previous studies showed that the limited N availability is linked 
with the degradation of chl contents (Gonzalez‐Real and Baille, 2000; Makino, 2011; Abid et al., 2016), which 

is demonstrated in present work with lower chl scores under heated conditions, particularly when subjected to 

lower concentration of Nitrogen (Figure 3a). Elevated temperatures (above 34°C) expedite leaf senescence by 
reducing chlorophyll biosynthesis. In contrast, chlorophyll fluorescence is closely linked to yield and serves as a 
measure of photosynthetic efficiency. Therefore, chlorophyll fluorescence can be valuable indicators for 
selecting heat-tolerant genotypes (Pandey et al., 2019). 

High temperatures also impact the water dynamics and content in plants, leading to cell dehydration 
HS due to a decrease in osmotic potential (Ahmad et al., 2010). In present investigation, lower concentrations 

of N resulted in reduced water contents in plants’ leaves and accelerated the degradation of plasma-membrane 
(Figure 3b-c). Therefore, high internal CO2 concentration due to high stomatal conductance could not be 
beneficial for increasing photosynthates production in plants under heated environment. Nevertheless, a 
prominent increase in chl scores, RWC and membrane stability was measured by increasing amount of N 

nutrient (Figure 3a-c). Nitrogen being a vital constituent of Chl, proteins and Rubisco (Pessarakli, 2001), has 
a potential to affect whole plant metabolism under HS environments (Ordonez et al., 2015). Therefore, in our 

study, supplying of higher amount of N over recommended dose has enhanced the thermostability of 
membrane, more Chl scores, photosynthetic rate and RWC. Grassi and Magnani (2005) also reported that 

adequate supply of N under abiotic stress environments could enhance the final output of crops by stabilizing 
photosynthetic machineries.  

In wheat, high temperature stress adversely impacts both seed germination and plant establishment 
(Hossain et al., 2013). Higher temperature up to 45 °C negatively affects embryonic cells, causing suboptimal 

germination and emergence, resulting in a weakened crop stand (Essemine et al., 2010). The influence of high 

temperatures influences the survival of productive tillers, contributing to a decline in overall yield and 
experiences a substantial decrease of 53.57 and 15.38 per cent in both grain yield and tiller number, respectively 
(Din et al., 2010). Additionally, heat stress induces a reduction in root growth, further impacting overall crop 

production (Huang et al., 2012). In this study, heat stress has resulted in substandard crop vigor, short-heighted 

plants, reduced tillers, less grains and grain weight as well as lower grain yield of wheat. Previously, Laghari et 

al. (2010) also reported that heat stress during early vegetative growth of wheat (ZGS 5-60) severely influenced 

the tillering capacity of wheat plants. Under HS, this study also recorded reduced plant height and tillers in 
wheat by 10.7 and 48.240 per cent, respectively, as compared to control group. Further, it was noted that this 
reduction in plant height and tillers was comparatively more in plants treated with lower rates of N (Figure 4a-
b). However, increasing the availability of N under heat stress conditions has improved the productive tillers 
by 18-28%. Thus, increase in N supply could alleviate heat-induced damages as were observed under N50 
treatment. The earlier study of Wu et al. (2011) indicated that stress imposed at vegetative growth periods 

affected tillering potential and hampered final crop productivity under low nitrogen supply treatments. In the 
present study, the plants with high N supply exhibited their potential to produce a greater number of grains 
and grains weight (Figure 5a-b) by improving photosynthetic activities under stressful environment. Further, 
a significant reduction in grain yield by 68.21% was observed under heat stress compared to control conditions 
across all N treatments (Figure 6a). Increased N levels led to a reduction in the extent yield loss. It was observed 
that, decline in crop yield under heat stress during vegetative stage (ZGS 5-60), was attributed to the 
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simultaneous impacts on grain number and grain weight either directly or indirectly. Results of this study 
showing significant reduction in wheat yield under HS were in line with previous study of Ordonez et al. 

(2015). Moreover, the reduction in grain yield might be associated with reduced photosynthetic rate (Mittler 
and Blumwald, 2010), less chl scores (Ahuja et al., 2010), reduced tiller numbers, limited grains per spike and 

decreased 1000-grains weight (Wang et al., 2008). In HS treatments, majority of the tillers underwent 

mortality during the later stages of wheat, resulting in a decrease in the net number of tillers per plant with ears 
at maturity.  

In wheat, during grain filling, extreme temperatures can cause a loss in grain yield of up to 23 per cent 
(Mason et al., 2010).  HS adversely impact both quality and quantity of wheat grains, causing decrease in grain 

number, and ultimately leads to a reduction in the harvest index (Lukac et al., 2012; Lizana and Calderini, 

2013). Wheat productivity undergoes significant reduction due to the detrimental effects of high temperatures 
during the growth process, even for a shorter period of time (Janjua et al., 2010; Sharma et al., 2016). In this 

study, the data from the Harvest index (Figure 6b) indicate that, under HS treatment and limited supply of 
nitrogen (N50), the reserves were primarily utilized for the maintenance of growth and development. 
Consequently, harsh environmental conditions during vegetative stage led to reduced morphological traits, 
physiological activities, grain yields and related traits. In contrast, The N150 treatment under heated treatment 
demonstrated significantly higher grain yield compared to N50 and N100 treatments. The improved 
physiological and yield traits of wheat under heat stress with higher N supply suggest that the detrimental 
effects of heat stress imposed at vegetative growth can be ameliorated through Nitrogen increments, presenting 
a cost-effective strategy for farming community. 

    
    
ConclusionsConclusionsConclusionsConclusions    
 
The present study revealed that the negative effects of heat stress during vegetative growth phase of 

wheat crop was counteracted by increasing the counteracted by increasing field applications of nitrogenous 
fertilizers. This study suggested that sufficient N supply under HS enhances rate and efficiency of 
photosynthesis, chlorophyll scores, membrane stability and water content, while simultaneously minimizing 
the down-regulation of photosynthetic processes and yield losses. Observations indicated that increased 
internal CO2 concentration and stomatal conductance under heat stress did not confer benefits to the final 
productivity of crop. Results showed that, higher stomatal conductance under heat stress has resulted in an 
increase in internal CO2 and transpiration rate. Further, grain yield of wheat was negatively correlated with 
transpiration rate, stomatal conductance, internal CO2 concentration and membrane rupture. Hence, in 
addition to morphological, physiological and agronomic studies, molecular investigations are imperative to 
comprehend the underlying processes driven by Nitrogen that enhance wheat’s potential to alleviate the 
detrimental effects of heat stress. 
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