Supporting Information

Advanced progress and prospects for producing high-octane gasoline fuel toward market development: State-of-the-art and outlook

Tamer M.M. Abdellatief ^{c, d} *[©], Mikhail A. Ershov ^a, Vsevolod D. Savelenko ^{a,} Vladimir M. Kapustin ^{a,b}, Ulyana A. Makhova ^a, Nikita A. Klimov ^a, Elena A. Chernysheva^a, Tarek M. Aboul-Fotouh ^e, Mohammad Ali Abdelkareem ^{c, d}, Ahmad Mustafa ^f, A.G. Olabi ^c

^{a)} Department of Oil Refining Technology, Faculty of Chemical and Environmental Engineering, Gubkin Russian State University of Oil and Gas (National Research University), Moscow 119991, Russia.

b) Academy of Engineering, Peoples' Friendship University of Russia (RUDN University), 115419 Moscow, Russia.

^c) Sustainable Energy & Power Systems Research Centre, RISE, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates

d) Department of Chemical Engineering, Faculty of Engineering, Minia University, EL-Minia 61519, Egypt.

^{e)} Department of Mining and Petroleum Engineering, Faculty of Engineering, Al-Azhar University, Cairo 11884, Egypt.

f) General Systems Engineering, Faculty of Engineering, October University for Modern Sciences and Arts (MSA), 12566, Egypt

*Corresponding Author

E-mail: tamerabdellatief@mu.edu.eg

Summary of Supporting Information (30 pages, 14 Figures, and 9Tables)

Supplement material

- Fig. S1. The principle of action of the detergent additive.
- Fig. S2. Typical detergent/dispersant molecule for deposit control.
- Fig. S3. The mechanism of corrosion inhibitor in a metal surface corrosion prevention.
- Fig. S4. Principle of the corrosion inhibitors additive and other gasoline additives.
- Fig. S5. Appearance of steel bars after testing by the method of ASTM D665.
- Fig. S6. Principle of operation of the friction modifier.
- Fig. S7. World demand for motor gasoline.
- Fig. S8. Structure of world production and consumption of motor gasoline in 2019.
- Fig. S9. Market structure of high-octane oxygenates.
- Fig. S10. Periods of use of the main high-octane components of motor gasoline in the world.
- Fig. S11. Brand structure of motor gasoline production in Russia.
- Fig. S12. Historical data on compression ratio, fuel RON and fuel economy in the USA.
- Fig. S13. Forecast of changes in CO₂ emission standards for passenger cars.
- Fig. S14. load characteristics of gasoline internal combustion engines of three different designs.

- Table S1. Global gasoline brands and their marketing claims.
- Table S2. Main groups of detergents compounds of multifunctional packages additives into motor gasoline.
- Table S3. The requirements of the legislation of various countries and manufacturers of equipment for the cleanliness of the fuel system.
- Table S4. Main groups of compounds of corrosion inhibitors components of multifunctional packages of gasoline additives.
- Table S5. Main groups of compounds of fuel friction modifiers.
- Table S6. The share of motorization in major consuming countries and producers of motor gasoline.
- Table S7. Requirements for motor gasoline in different countries.
- Table S8. Component composition of the gasoline pool of the Russian Federation in 2019.
- Table S9. Distribution of automotive technologies.

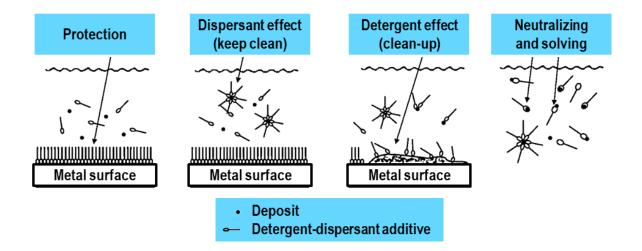


Fig. S1. The principle of action of the detergent additive. Detergent-Dispersant forms a solubility, and ,protective film on metal surfaces, besides their dispersant, detergent neutralization of acids activities.

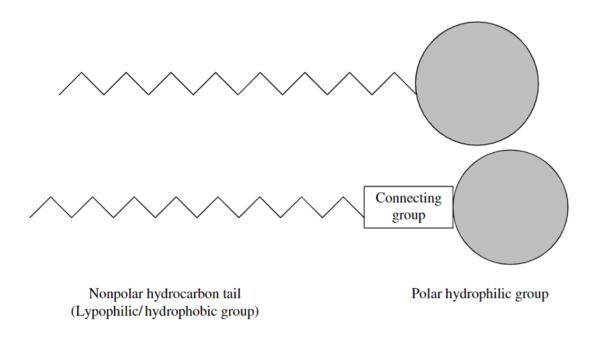


Fig. S2. Typical detergent/dispersant molecule for deposit control. All detergent and dispersant (DD) additives have a polar hydrophilic and a nonpolar hydrophobic group in their structure.

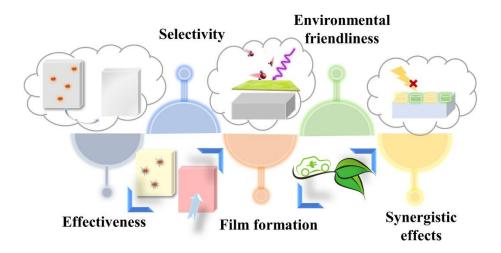


Fig. S3. The mechanism of corrosion inhibitor in a metal surface corrosion prevention. The corrosion inhibitors change the potential at the interface by adsorbing themselves at the double layer as ions or dislodging the ions originally present there.

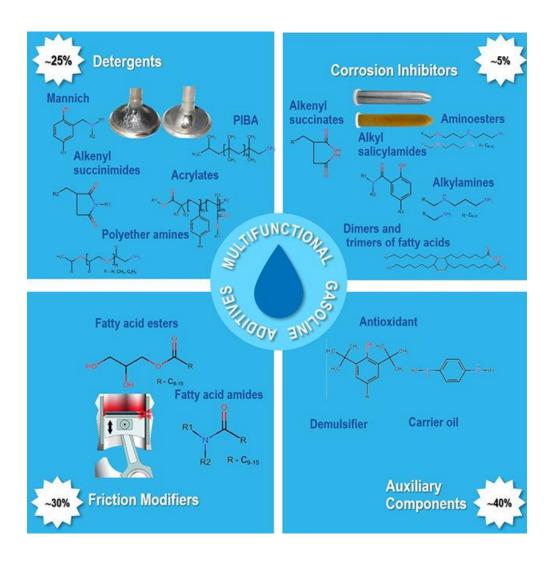


Fig. S4. Principle of the corrosion inhibitors additive and other gasoline additives. Friction modifiers are mild anti-wear additives used to minimize light surface contact, such as sliding and rolling. The corrosion inhibitor slows down the rate at which a metal in that environment corrodes. Passivation, poisoning, precipitation, and adsorption on the surface are the ways by which corrosion inhibitors prevent metal corrosion. Detergents are additives that adhere to dirt and oil insoluble products formed as oxidation by-products during equipment operation.

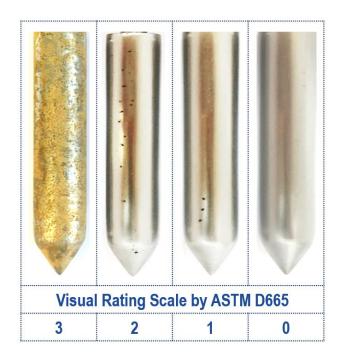


Fig. S5. Appearance of steel bars after testing by the method of ASTM D665. The surface of the rod is free from traces of corrosion. Thus, 20 ppm of this anti-corrosion additive will also be .included in the optimal fuel composition.

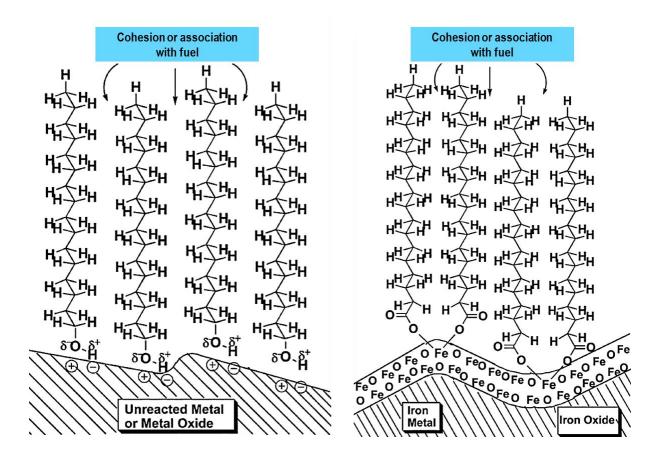


Fig. S6. Principle of operation of the friction modifier. Friction modifiers are mild anti-wear additives used to minimize light surface contact, such as sliding and rolling.

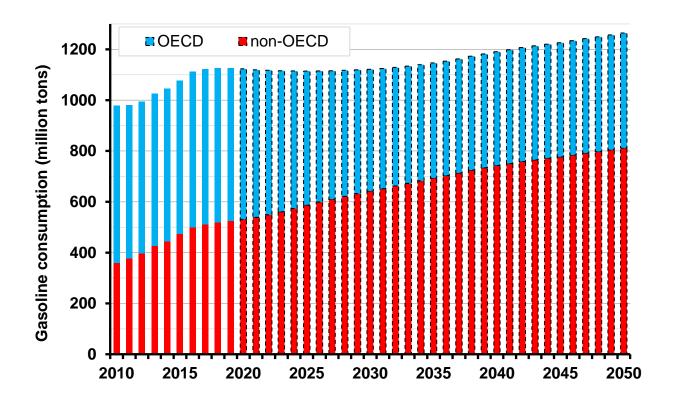


Fig. S7. World demand for motor gasoline intensive decline in demand for gasoline in the countries of the Organization for Economic Cooperation and Development (OECD) is predicted due to the implementation of decarbonization programs for transport in accordance with the European Green Deal adopted in 2019 and other agreements to achieve carbon neutrality by 2050-2060.

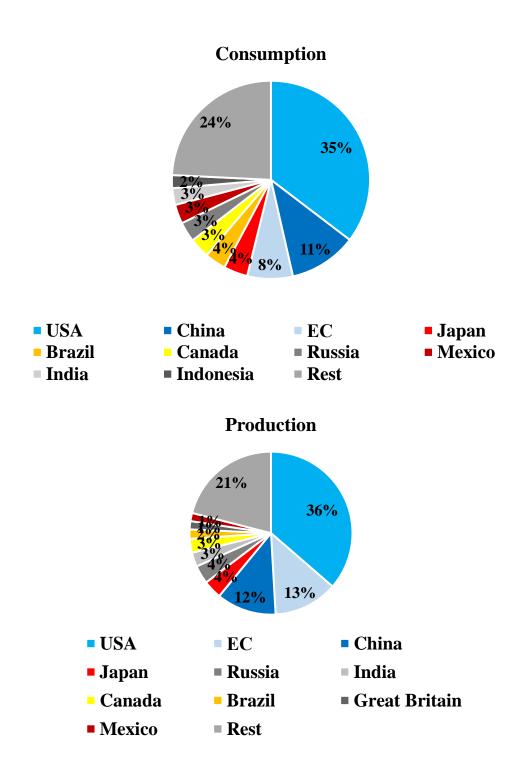


Fig. S8. Structure of world production and consumption of motor gasoline in 2019. The largest world markets for motor gasoline at the moment are the markets of China, the USA and the EU. The volume of production in the USA in 2019 amounted to about 400 million tons, while consumption turned out to be at the level of 390 million tons

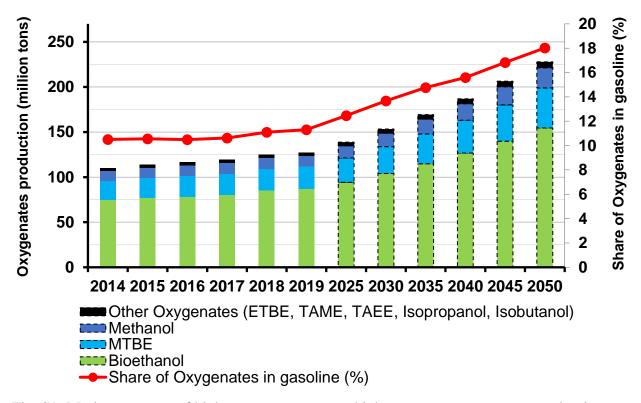


Fig. S9. Market structure of high-octane oxygenates. high-octane oxygenates are used to increase the octane number of motor gasoline. The most large-scale high-octane oxygenate used as a component of motor gasoline is ethanol.

1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010 2020

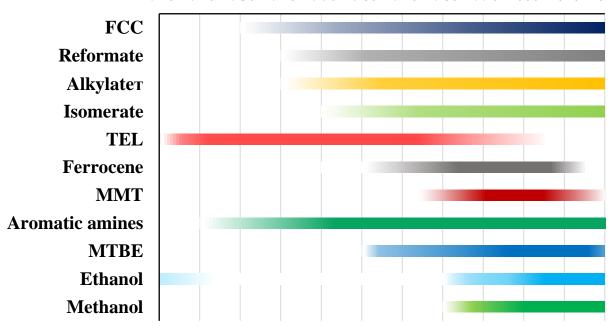


Fig. S10. Periods of use of the main high-octane components of motor gasoline in the world. properly blended M15 fuel with appropriate levels of co-solvents (for low temperature phase stability) and corrosion inhibitors provides satisfactory performance.

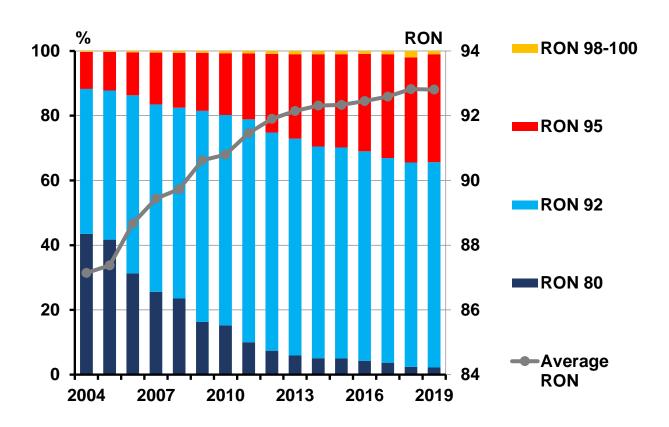


Fig. S11. Brand structure of motor gasoline production in Russia. The average octane number of the gasoline pool has increased over the past 15 years from 87.1 in 2004 to 92.8 in 2019.

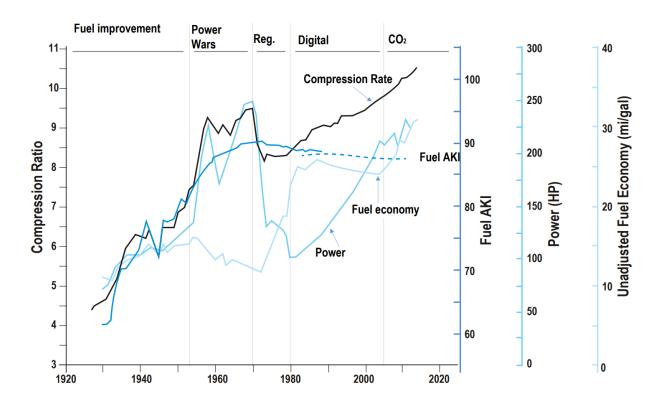


Fig. S12. Historical data on compression ratio, fuel RON and fuel economy in the USA. RON increased from 80.5 in 1953 to 90 in 1970, while the concentration of TEL remained unchanged. The increase in the RON of produced gasoline during this period made it possible to significantly increase the compression ratio of engines, which made it possible to increase the performance of internal combustion engines.

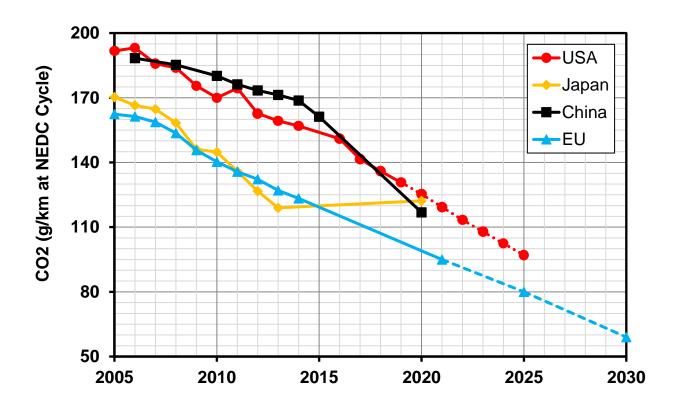


Fig. S13. Forecast of changes in CO₂ emission standards for passenger cars. The transition to the current stage of development - the era of decarbonization is associated with the introduction of legislative standards for fuel economy and CO₂ emissions.

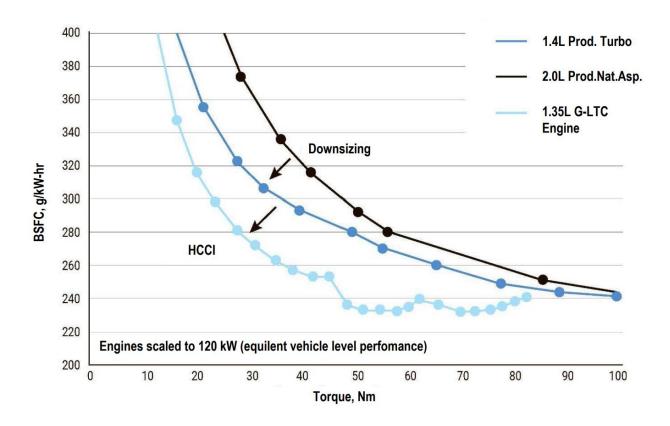


Fig. S14. load characteristics of gasoline internal combustion engines of three different designs. Due to the over-leaning of the mixture, it is possible to avoid detonation during operation in the HCCI mode even with a significantly increased engine compression ratio, as a result of which the efficiency and fuel efficiency of the HCCI can be significantly increased relative to the classic gasoline internal combustion engine.

Table S1. Global gasoline brands and their marketing claims

Company		Key marketing statements
Shell	✓	Remove an average of 70% of baked-in deposits left
		by lower-quality premium gasoline, starting with the
		very first tank.
	\checkmark	Formulate with a unique agent to provide unbeatable
		protection against corrosion.
	✓	Provide our best protection against wear and tear in
		engine.
	✓	Reduce friction at interior engine surfaces.
Exxon	✓	Fuel detergents provide outstanding cleanliness in
Mobil		port fuel injection and direct injection engines.
		Cleaner engine parts can lead to better gas mileage,
		engine protection and performance.
	✓	Friction modifier protects engine by reducing wear
		and tear by 30%.
	✓	Corrosion inhibitor helps prevent rust in fuel
		distribution systems and/or key engine parts the fuel
		comes into contact with, such as the gas tank and the
		intake valves.
Chevron	✓	Gasoline with Techron clean up grimy deposits
Texaco		(remove up to 50% of harmful carbon deposits) that
CALTEX		can interfere with fuel combustion—which can boost
		miles per gallon. Also, Techron helps to minimize the
		harmful combustion chamber deposits that can lead to
		knocking.

- ✓ Carbon build-up from low-quality gasolines can negatively affect engine to the point where acceleration lags. The cleaning power of Techron helps to remove those deposits for a smoother drive.
- ✓ Techron's cleaning technology bonds to vital engine parts to minimize carbon deposits which helps keep the air and fuel in engine flowing properly. This can limit the harmful emissions that cause air pollution.
- BP ✓ Specially formulated to remove existing dirt from critical engine components (intake valves and fuel injectors) and protect against its build up.
 - ✓ Cleaning of engine deposits, thanks to the use of BP Ultimate with active technology can give an additional up to 21 miles per tank.
 - ✓ BP Ultimate Unleaded also contains a friction modifier which improves the upper cylinder lubrication of the engine. This can contribute to improved engine efficiency and therefore improved fuel economy.
 - ✓ Prevent up to 93% of fouling in gasoline engines and cleans up to 24% of existing build-up in gasoline engines.
 - ✓ By eliminating deposits, Total Excellium enables your engine to maintain its performance. Its anticorrosion technology protects your engine for an extended lifetime.
 - ✓ Total Excellium contains detergents which make for a reduction in your fuel consumption.
 - ✓ By improving the running of your engine, Total Excellium contributes to a reduction in polluting

emissions. The reduction in consumption directly results in a reduction in CO₂ emissions¹⁵.

Rosneft

✓ Remove up to 84% of the existing deposits on the intake valves after 60 hours of engine operation (when switching from regular gasoline). Provides 100% maintenance of clean injectors in direct injection engines.

Lukoil

- ✓ The cleanliness of the fuel system ensures maximum atomization and complete combustion of the fuel, provides stable power, fuel economy (up to 5%) and reduces harmful emissions.
- ✓ Corrosion inhibitors components ensure that the metal surfaces are coated with a protective film, which, in turn, prevents corrosion.
- ✓ The presence of a friction modifier in the ECTO fuel reduces mechanical friction in the cylinder area and provides excellent maneuverability due to an instant increase in power under various engine operating modes.

Gazprom

 \checkmark The increase in engine power of up to 12 %.

Neft

- ✓ Improve vehicle acceleration dynamics up to 1.8 seconds.
- ✓ Reduce deposits on the engine exhaust valves by more than 10 times.
- ✓ Reliable protection of the fuel tank against corrosion and ingress of water-fuel emulsion into the fuel system of the engine.

Table S2. Main groups of detergents compounds of multifunctional packages additives into motor gasoline.

Class of compound	Structural formula	World manufacturers	Effectiveness on various elements fuel system			
		/ developers	valve	nozzle	chamber	
Mannich base	OH R1	Afton Chemical, Lubrizol, Total, Innospec, Ethyl Corp	High	Low	Moderate	
Polyisobutene monoamine	H_3C CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3	BASF	High	Low	Moderate	
Alkenyl succinimides	R2 N—R1	BASF, ExxonMobil	Low	High	Low	
Polyether amines	H_3C R	Shell, China Petroleum	Low	Low	High	
Low molecular weight amines	R1—NH ₂ R1—N R2 R1 - C ₇₋₂₀ R2 - C ₁₋₄	BASF, Lubrizol, Shell	Very low	High	Moderate	
Block copolymer of alkyl acrylate and styrene derivatives	R1 R2 R3 R2 R1 R4	Total	-	High	-	

Table S3. The requirements of the legislation of various countries and manufacturers of equipment for the cleanliness of the fuel system.

Tor the creaminess of the race	Properties	Engine	WWFC	USA		China	India	
			5/6*	EPA	CARB	TOP TIER	(Beijing)	
Fuel injector cleanliness, % flo	w loss,							
max:		Chrysler	5	5	5	5	5	-
ASTM D5598 -		2.2L	10	-	-	-	-	-
ASTM D6421 -		Chrysler	-	-	-	Max one	-	-
GM 4.3-L V6 -		2.2L				dirty		
		GM 4.3-L				injector		
		V6						
Intake valve cleanliness, mg/valv	e, max:							
CEC F-05-A-93 -		MB M102	30	-	-	-	-	50
CEC F-20-A-98 -		MB M111	-	-	-	-	70	-
ASTM D5500 -		BMW 318i	-	100	50	-	-	100
ASTM D6201 -		Ford 2.3L	50	-	-	50	130	90
Combustion chamber deposits*	, max:							
ASTM D5500, mg/valve -		BMW 318i	-	-	1300	-	-	-
ASTM D5500, % of base fuel	_	BMW 318i	-	-	140	-	-	-
ASTM D6201, % of base fuel	_	Ford 2.3L	140	-	-	140	-	-

^{*} Standards for categories 5 and 6 of fuel markets according to WWFC.

Table S4. Main groups of compounds of corrosion inhibitors components of multifunctional packages of gasoline additives

Class of compound	Structural formula	World
		manufacturers
Alkenyl succinates		/ developers
Alkenyi succinates		Innospec, Petrolite,
	R ^r John	Nalco,
	OH	Chevron,
		ExxonMobil
Dimers and trimers of fatty acids	0	Innospec,
		Petrolite,
	H ₂ C OH	Nalco,
	нэс	Du Pont
Aminoesters and polyaminoesters		Petrolite
	R O NH ₂	
	R O A NH - O	
	NH ₂ R- C ₆₋₁₂	
Alkylamines and polyalkylamines		Innospec,
	$R \longrightarrow NH_2$	AkzoNobel
	R NH ₂ R-C ₆₋₁₂	
	~	
Fatty acid amides	Ŗ1	BASF
	1	Nalco
	R3 R2	
Alkyl salicylamides	О ОН ОН	Rosneft
	R1 N	
	R2 (
	R3	

Table S5. Main groups of compounds of fuel friction modifiers

Table 55. Wall groups of compounds of fuel metion mounters								
Class of compound	Structural formula	World manufacturers						
		/ developers						
Fatty acid esters and their derivatives	HO OH R-C ₉₋₁₅	Total, Ethyl, ExxonMobil						
Fatty acid amides and their derivatives	R1 R R2 R - C ₉₋₁₅	Innospec, Lubrizol, Shell, ExxonMobil, Afton						

Table S6. The share of motorization in major consuming countries and producers of motor gasoline.

	Number of cars per 1000 person				
Country/Region	2008	2018			
Africa	27.2	39.8			
Asia, Far East	53.8	118.8			
Asia, Middle East	102.7	155.7			
Brazil	140	212.8			
Canada	623	656.1			
Central and South America	131.9	181.3			
China	35.7	167			
Eastern Europe	300	399			
Western Europe	593.2	619.5			
India	13.2	43.6			
Indonesia	34.7	102.2			
Mexico	230.2	343			
USA	838.5	836.3			

Table S7. Requirements for motor gasoline in different countries.

Name of indicator	Requirements of regulatory and technical documentation							
	Russia		World Fuel	European		Japan	China	Canada
			Charter 2019		California		75	G 1277 G G G B
	TR TS	GOST		98/97/EC	CaRFG	JIS K		CAN/CGSB-
	013/2011	32511-2013			Phase 3	2202	17930- 2016	3.5-2016
Octane number:							2010	
- RON		<u>></u>	<u>></u>	≥ 91/95	_	≥ 89/96	≥89/92/95	_
- MON			91/95/98/102		_			≥82/ - /-/-
		<u> </u>	$\geq 82.5/85/88$	_				_
		76/83/85/88						
Mass fraction of sulfur, mg/kg	≤ 10	≤ 10	≤ 10	≤ 10	≤ 15 *	≤ 10	≤ 10	≤10
Volume fraction of hydrocarbons, %:								
- aromatic	\leq 35.0	≤ 35.0	≤ 35.0	\leq 35.0	\leq 22.0	-	≤ 40	-
- benzene	_	≤ 1.0	≤ 1.0	≤ 1.0	≤ 0.7	≤ 1.0	≤1	≤ 1.5
- olefinic		≤ 18.0	≤ 10.0	≤ 18.0	≤ 4.0	-	≤ 24	-
Oxygen concentration, wt. %	≤ 2.7	≤ 2.7	\leq 3.7 + E22	≤ 3.7	1.8-3.5 (3.7)	$\leq 1.3-3.7$	≤2.7	≤2.7
metal concentration,	Absence	Absence	$\leq 1 \text{ mg/Kg}$	Absence	Absence	Absence	Pb ≤0.005	Pb ≤0.005
	Pb, Mn, Fe	Pb, Mn, Fe	or Absence	Pb, Mn	Pb, Mn	Pb	Mn ≤0.002	Mn ≤0.0018
Phosphorus content	-	-	≤ 1 мг/кг	-	≤ 5 мг/л	ı	-	≤0.0013 г/л
Chlorine content, mg/kg	-	-	≤1	-	-	-	-	-
Concentration of washed wax, mg/100 cm ³	-	≤ 5	≤ 5	≤5	-	≤ 3	-	-
Concentration of wax, unwashed solution, mg/100 cm ³		-	≤ 30	-	-	≤ 20	-	-

Content of mechanical impurities, mg/l	-	-	≤ 1	-	-	-	-	-
--	---	---	-----	---	---	---	---	---

Name of indicator		Requ	uirements of regulatory and technical documentation					
	R	ussia	World Fuel	European	USA,	Japan	China	Canada
		_	Charter	Union	California			
	TR TS	GOST	2019	98/97/EC	CaRFG	JIS K	GB 17930-	CAN/CGSB-
	013/2011	32511-2013			Phase 3	2202	2016	3.5-2016
Definition of particulate matter, ISO	-	-	18/16/13	-	-	-	-	-
code								
Induction period of gasoline, min	-	≥ 360	≥ 480	≥ 360	≥ 240	≥ 240	≥ 480	≥ 240
Cleanliness of the nozzle, % reduction in throughput		1	≤ 5	1	≤ 5	1	-	-
Inlet valve cleanliness, mg	-	-	≤ 30	1	≤ 50	1	-	-
Deposition in the combustion chamber, mg/cylinder		-	≤140% ****	-	≤ 1300	-	-	-
PMI	-	-	specify	-	-	-	-	-

Note: * The average annual rate is indicated ** The rate is indicated for a separate batch of gasoline *** The rate is indicated when conducting qualification tests **** The rate is indicated in% of the base gasoline when conducting comparative tests of gasoline with a detergent additive

Table S8. Component composition of the gasoline pool of the Russian Federation in 2019.

Commercial gasoline		Production, thousand	Share of the component in the gasoline
	components	tons	pool, %
	Reformate	17126	42.0
	FCC gasoline	10222	25.1
	Isomerate	7607	18.7
	Alkylate	1694	4.2
Light	Hydrocracking	836	2.1
	Gasoline		
	MTBE	1385	3.4
	TAME	217	0.5
	Low octane fractions:	1684	4.1
	Commercial gasoline	40771	100.0

Table S9. Distribution of automotive technologies.

Year	continuously variable transmission	Cylinder deactivation	Stop-start	Turbocharging	Direct injection
1996	0.0%			0.3%	
1997	0.1%			0.7%	
1998	0.1%			1.4%	
1999	0.0%			2.5%	
2000	0.0%			2.2%	
2001	0.0%			3.3%	
2002	0.1%			3.9%	
2003	1.0%			20.0%	
2004	0.9%			3.6%	
2005	1.1%	1.0%		2,.4%	
2006	1.2%	2.0%		3.2%	
2007	6.7%	0.9%		3.6%	0.3%
2008	7.7%	2.0%		4.5%	3.1%
2009	8.3%	1.8%		4.0%	4.2%
2010	8.4%	2.1%		4.1%	9.2%
2011	8.8%	1.3%		8.2%	18.4%
2012	11.0%	1.7%	1.3%	9.7%	27.4%
2013	13.7%	1.9%	3.5%	15.1%	37.3%
2014	21.3%	2.2%	10.7%	18.1%	42.7%
2015	26.3%	2.2%	12.7%	18.1%	44.0%
2016	27.2%	2.1%	12.1%	23.6%	49.5%
2017	29.1%	3.0%	20.5%	29.0%	52.4%
2018	26.7%	3.3%	26.0%	36.4%	52.6%
2019	29.5%	3.1%	28.7%	39.0%	54.8%